K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2023

Vì \(\Delta ABC\) đều nên AB = AC = BC (tính chất tam giác đều)

Vì I là điểm cách đều 3 cạnh của tam giác nên là giao điểm của 3 đường phân giác của tam giác ABC

Áp dụng ví dụ 2, ta được, AI là đường trung tuyến của \(\Delta ABC\)

Tương tự, ta cũng được BI, CI là đường trung tuyến của \(\Delta ABC\)

Vậy I là giao điểm của ba đường đường trung tuyến của \(\Delta ABC\) nên I là trọng tâm của \(\Delta ABC\).

Chú ý:

Với tam giác đều, giao điểm của 3 đường trung tuyến cũng là giao điểm của 3 đường phân giác.

19 tháng 9 2023

Tam giác ABC đều nên AB = BC = CA

Tam giác ABC cân tại B có BN là đường trung tuyến

\( \Rightarrow BN\)là đường trung trực của đoạn thẳng AC

Tam giác BAC cân tại A có AP là đường trung tuyến

\( \Rightarrow AP\)là đường trung trực của đoạn thẳng BC

Mà \(BN \cap AP = G\)

\( \Rightarrow G\)là giao điểm ba đường trung trực của tam giác ABC

\( \Rightarrow GA = GB = GC\).

19 tháng 4 2017

Gọi giao điểm của BG với AC là M;

CG với AB là N

Vì G là trọng tâm của ∆ ABC

nên BM, CN, là trung tuyến

Mặt khác ∆ABC cân tại A

Nên BM = CN

Ta có GB = 1212BM; GC = 2323CN (t/c trọng tâm của tam giác)

Mà BM = CN nên GB = GC

Do đó: ∆AGB = ∆AGC (c.c.c)

=> ˆBAG=ˆCAGBAG^=CAG^ => G thuộc phân giác của ˆBACBAC^

Mà ∆ABI = ∆ACI (c.c.c)

=> ˆBAI=ˆCAIBAI^=CAI^ => I thuộc phân giác của ˆBACBAC^

Vì G, I cùng thuộc phân giác của ˆBACBAC^ nên A, G, I thẳng hàng

19 tháng 4 2017

Hướng dẫn:

a) Căn cứ các kí hiệu đã cho trên hình của bài 39 ta có: ∆ABD và ∆ACD có:

AB = AC

ˆBAD=ˆCADBAD^=CAD^

AD là cạnh chung

=> ∆ABD = ∆ACD

b) Vì ∆ABD = ∆ACD

=> BD = CD => ∆BCD cân tại D

=> ˆDBC=ˆDCB

17 tháng 2 2019

                             Giải

Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lá»p 7

- Gọi M, N là trung điểm CA và BA.

ΔABC cân tại A có BM, CN là đường trung tuyến ứng với cạnh AC, AB.

⇒ BM = CN ( chứng minh ở bài 26)

Mà \(GB=\frac{2}{3}BM;GC=\frac{2}{3}CN\)(Tính chất trọng tâm của tam giác)

⇒ GB = GC

- ΔAGB và ΔAGC có

AG chung

AB = AC (do ΔABC cân tại A)

GB = GC (chứng minh trên)

⇒ ΔAGB = ΔAGC (c.c.c)

\(\Rightarrow\widehat{BAG}=\widehat{CAG}\)( hai góc tương ứng )

\(\Rightarrow\)G là trọng tâm của \(\widehat{BAC}\)

- Theo đề bài I cách đều ba cạnh của tam giác

Dựa vào chứng minh bài 36 ⇒ I là điểm chung của ba đường phân giác

⇒ I thuộc tia phân giác của \(\widehat{BAC}\)

Vì G, I cùng thuộc tia phân giác của  \(\widehat{BAC}\)nên A, G, I thẳng hàng

10 tháng 4 2016

Gọi giao điểm của BG với AC là M;

CG với AB là N

Vì G là trọng tâm của ∆ ABC

nên BM, CN, là trung tuyến

Mặt khác ∆ABC cân tại A

Nên BM = CN 

Ta có GB = BM; GC = CN (t/c trọng tâm của tam giác)

Mà BM = CN nên GB = GC

Do đó: ∆AGB = ∆AGC (c.c.c)

=>   => G thuộc phân giác của 

Mà ∆ABI = ∆ACI (c.c.c)

=>  => I thuộc phân giác của 

Vì G, I cùng thuộc phân giác của  nên A, G, I  thẳng hàng



 

2 tháng 4 2018

Vì G là trọng tâm của tam giác ABC trên D thuộc đường trung tuyến AM (1)

Vì I là giao điểm các phân giác của tam giác ABC nên AI là tia phân giác của góc A mà trong tam giác cân phân giác của góc ở đỉnh của tam giác cũng là trung tuyến do đó I thuộc trực tuyến AM(2)

Từ (1) và (2 )suy ra 3 điểm A,I,G thẳng hàng

10 tháng 4 2016

Gọi giao điểm của BG với AC là M;

CG với AB là N

Vì G là trọng tâm của ∆ ABC

nên BM, CN, là trung tuyến

Mặt khác ∆ABC cân tại A

Nên BM = CN 

Ta có GB = BM; GC = CN (t/c trọng tâm của tam giác)

Mà BM = CN nên GB = GC

Do đó: ∆AGB = ∆AGC (c.c.c)

=>   => G thuộc phân giác của 

Mà ∆ABI = ∆ACI (c.c.c)

=>  => I thuộc phân giác của 

Vì G, I cùng thuộc phân giác của  nên A, G, I  thẳng hàng


 

25 tháng 1 2017

Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Gọi M, N là trung điểm CA và BA.

ΔABC cân tại A có BM, CN là đường trung tuyến ứng với cạnh AC, AB.

⇒ BM = CN ( chứng minh ở bài 26)

Mà Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (Tính chất trọng tâm của tam giác)

⇒ GB = GC

- ΔAGB và ΔAGC có

AG chung

AB = AC (do ΔABC cân tại A)

GB = GC (chứng minh trên)

⇒ ΔAGB = ΔAGC (c.c.c)

Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Theo đề bài I cách đều ba cạnh của tam giác

Dựa vào chứng minh bài 36 ⇒ I là điểm chung của ba đường phân giác

⇒ I thuộc tia phân giác của Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vì G, I cùng thuộc tia phân giác của Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 nên A, G, I thẳng hàng

11 tháng 1 2019

I nằm trong tam giác và cách đều ba cạnh của tam giác nên MI là tia phân giác của góc M.

Do tam giác MNP cân tại M nên đường giác MI cũng là đường trưng tuyến.

G là trọng tâm của tam giác MNP nên G nằm trên MI.

Từ đó, suy ra M,G, I thẳng hàng.