K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2023

Vì \(\Delta ABC\) đều nên AB = AC = BC (tính chất tam giác đều)

Vì I là điểm cách đều 3 cạnh của tam giác nên là giao điểm của 3 đường phân giác của tam giác ABC

Áp dụng ví dụ 2, ta được, AI là đường trung tuyến của \(\Delta ABC\)

Tương tự, ta cũng được BI, CI là đường trung tuyến của \(\Delta ABC\)

Vậy I là giao điểm của ba đường đường trung tuyến của \(\Delta ABC\) nên I là trọng tâm của \(\Delta ABC\).

Chú ý:

Với tam giác đều, giao điểm của 3 đường trung tuyến cũng là giao điểm của 3 đường phân giác.

19 tháng 9 2023

a) Kẻ đường trung trực của đoạn thẳng BC, cắt BC tại D

Ta có: Tam giác ABC cân nên AB = AC

\( \Rightarrow A\)thuộc đường trung trực của cạnh BC (t/c)

\( \Rightarrow AD\)là đường trung trực của BC.

Xét \(\Delta ABD\)và \(\Delta ACD\)có:

AB = AC (gt)

BD = CD (gt)

AD: cạnh chung

\( \Rightarrow \Delta ABD = \Delta ACD\left( {c - c - c} \right)\)

\( \Rightarrow \widehat {BAD} = \widehat {CAD}\)

\( \Rightarrow \)AD là tia phân giác góc BAC.

Vậy tam giác ABC cân tại A, đường trung trực của cạnh BC là đường cao và cũng là đường phân giác xuất phát từ đỉnh A của tam giác đó.

b)

Ta có: Điểm cách đều ba đỉnh của tam giác là giao điểm ba đường trung trực của tam giác đó.

Tam giác ABC đều nên AB = BC = CA

Tam giác ABC cân tại A có AN là đường trung tuyến

\( \Rightarrow \) AN là đường phân giác xuất phát từ đỉnh A (cm ở ý a)

Tương tự: BP, CM lần lượt là đường phân giác xuất phát từ B và C của tam giác ABC

Mà AN cắt BP tại G

\( \Rightarrow G\) là giao điểm ba đường phân giác của tam giác ABC

\( \Rightarrow G\) cách đều ba cạnh của tam giác ABC (Tính chất

10 tháng 4 2016

Gọi giao điểm của BG với AC là M;

CG với AB là N

Vì G là trọng tâm của ∆ ABC

nên BM, CN, là trung tuyến

Mặt khác ∆ABC cân tại A

Nên BM = CN 

Ta có GB = BM; GC = CN (t/c trọng tâm của tam giác)

Mà BM = CN nên GB = GC

Do đó: ∆AGB = ∆AGC (c.c.c)

=>   => G thuộc phân giác của 

Mà ∆ABI = ∆ACI (c.c.c)

=>  => I thuộc phân giác của 

Vì G, I cùng thuộc phân giác của  nên A, G, I  thẳng hàng


 

4 tháng 12 2021

Chịu rồi!!!

17 tháng 2 2019

                             Giải

Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lá»p 7

- Gọi M, N là trung điểm CA và BA.

ΔABC cân tại A có BM, CN là đường trung tuyến ứng với cạnh AC, AB.

⇒ BM = CN ( chứng minh ở bài 26)

Mà \(GB=\frac{2}{3}BM;GC=\frac{2}{3}CN\)(Tính chất trọng tâm của tam giác)

⇒ GB = GC

- ΔAGB và ΔAGC có

AG chung

AB = AC (do ΔABC cân tại A)

GB = GC (chứng minh trên)

⇒ ΔAGB = ΔAGC (c.c.c)

\(\Rightarrow\widehat{BAG}=\widehat{CAG}\)( hai góc tương ứng )

\(\Rightarrow\)G là trọng tâm của \(\widehat{BAC}\)

- Theo đề bài I cách đều ba cạnh của tam giác

Dựa vào chứng minh bài 36 ⇒ I là điểm chung của ba đường phân giác

⇒ I thuộc tia phân giác của \(\widehat{BAC}\)

Vì G, I cùng thuộc tia phân giác của  \(\widehat{BAC}\)nên A, G, I thẳng hàng

19 tháng 9 2023

Tam giác ABC đều nên AB = BC = CA

Tam giác ABC cân tại B có BN là đường trung tuyến

\( \Rightarrow BN\)là đường trung trực của đoạn thẳng AC

Tam giác BAC cân tại A có AP là đường trung tuyến

\( \Rightarrow AP\)là đường trung trực của đoạn thẳng BC

Mà \(BN \cap AP = G\)

\( \Rightarrow G\)là giao điểm ba đường trung trực của tam giác ABC

\( \Rightarrow GA = GB = GC\).

7 tháng 4 2017

A B C D E F H 1 2 1 2 1 2

Bạn biết rằng đường trung tuyến của tam giác đều cũng là đường phân giác của tam giác

Mà <A = <B = <C ( dấu góc đó nhe bạn, mình k bik bấm dấu góc ở đâu hết :) )

=> <A / 2 = <B / 2 = <C / 2

=> <A1 = <A2 = <B1 = <B2 = <C1 = <C2

Xét tam giác AHC có: <A1 = <C1 => tam giác AHC là tam giác cân tại H => AH = HC (1)

Xét tam giác HCB có: <C1 = <B2 => tam giác BHC là tam giác cân tại H => HC = HB (2)

Xét tam giác BHA có: <B2 = <A2 => tam giác BHA là tam giác cân tại H => HB = HA (3)

Từ (1), (2), (3) => HA = HB = HC => điều phải chứng minh

13 tháng 4 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Giả sử hai tia phân giác của các góc ngoài tại đỉnh B và C của tam giác ABC cắt nhau tại O. Ta sẽ chứng minh AO là tia phân giác của góc A.

Kẻ các đường vuông góc OH, OI, OK từ O lần lượt đến các đường thẳng AB, BC, AC.

Vì BO là tia phân giác của góc HBC nên OH = OI (1)

Vì CO là tia phân giác của góc KCB nên OI = OK (2)

Từ (1) và (2) suy ra OI = OH = OK

(3)

 

Suy ra: O thuộc đường phân giác của góc BAC.

Suy ra AO là tia phân giác của góc BAC và ta có điều phải chứng minh.