Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Ta có: \(\sqrt{2020}-\sqrt{2019}=\frac{1}{\sqrt{2020}+\sqrt{2019}};\)\(\sqrt{2018}-\sqrt{2017}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
Dễ thấy \(\sqrt{2020}+\sqrt{2019}>\sqrt{2018}+\sqrt{2017}\)nên \(\frac{1}{\sqrt{2020}+\sqrt{2019}}< \frac{1}{\sqrt{2018}+\sqrt{2017}}\)
Suy ra\(\sqrt{2020}-\sqrt{2019}< \sqrt{2018}-\sqrt{2017}\)
Bài 2: Xét biểu thức \(\sqrt{a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2}=\sqrt{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}=\sqrt{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1\)(Vì \(a^2+a+1>0\forall a\inℝ\))
Áp dụng công thức tổng quát trên, ta được: \(\sqrt{2019^2+2019^2.2020^2+2020^2}=2019^2+2019+1\)(là số tự nhiên) (đpcm)
\(\sqrt{2019^2+2019^2.2020^2+2020^2}=\sqrt{2019^2+\left(2020-1\right)^2.2020^2+2020^2}=\sqrt{2019^2+2020^4-2.2020.2020^2+2020^2+2020^2}=\sqrt{2020^4+2.2020^2-2.\left(2019+1\right).2020^2+2019^2}=\sqrt{2020^4+2.2020^2-2.2019.2020^2-2.2020^2+2019^2}=\sqrt{2020^4-2.2019.2020^2+2019^2}=\sqrt{\left(2020^2-2019\right)^2}=\left|2020^2-2019\right|=2020^2-2019\)
Vì 20202-2019\(\in N\)
Vậy \(\sqrt{2019^2+2019^2.2020^2+2020^2}\)\(\in N\)
A B C D E I K J H M O
gọi các điểm như trên hình
I là giao 2 đường tiếp tuyến HI và AC=>OI là phân giác góc EOK (1) và IE=IK
C là giao 2 tiếp tuyến AC và BC => OC là phân giác góc KOD (2) và KC=DC
(1) và (2) => tam giác IOC vuông tại O, có đường cao OK =>OK2=IK.KC <=> OK2=IE.DC
CM tương tự ta được OJ2 = EH.BD
mà \(\text{OK=OJ=r}\)
=>\(\text{IE.DC=EH.BD}\)
=>\(\frac{EH}{EI}=\frac{CD}{BD}\)
Ta có : \(\text{HI // BC}\)
=>\(\frac{EI}{MC}=\frac{AI}{AC}=\frac{AH}{AB}=\frac{EH}{BM}\)
=> \(\frac{BM}{MC}=\frac{EH}{EI}\)
=>\(\frac{BM}{CM}=\frac{EH}{EI}=\frac{CD}{BD}\)
=> \(1+\frac{BM}{CM}=1+\frac{CD}{BD}\)\(\Leftrightarrow\frac{BC}{CM}=\frac{BC}{BD}\Rightarrow CM=BD\)
Ta có: \(m^2\equiv0,1,4\)(mod 5)
TH1: \(m^2\equiv1\left(mod.5\right)\)
\(m^2+4\equiv0\left(mod.5\right)\)
-> mà m khác 1 -> ko phải snt
TH2: \(m^2\equiv4\left(mod.5\right)\)
\(m^2+16\equiv0\left(mod.5\right)\)
-> chia hết cho 5-> không phải số nguyên tố
Vậy \(m^2\equiv0\left(mod.5\right)\)-> m chia hết cho 5
Trước hết ta có:
\(23^{2018}+23^{2020}>2\sqrt{23^{2018}.23^{2020}}=2\sqrt{23^{4038}}=2.23^{2019}\)
Dễ dàng nhận ra \(A>0\) và \(B>0;\) xét thương:
\(\dfrac{A}{B}=\dfrac{23^{2018}+1}{23^{2019}+1}\div\dfrac{23^{2019}+1}{23^{2020}+1}=\dfrac{\left(23^{2018}+1\right)\left(23^{2020}+1\right)}{\left(23^{2019}+1\right)^2}\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{23^{4038}+23^{2018}+23^{2020}+1}{\left(23^{2019}+1\right)^2}=\dfrac{\left(23^{2019}\right)^2+23^{2018}+23^{2020}+1}{\left(23^{2019}+1\right)^2}\)
\(\Rightarrow\dfrac{A}{B}>\dfrac{\left(23^{2019}\right)^2+2.23^{2019}+1}{\left(23^{2019}+1\right)^2}=\dfrac{\left(23^{2019}+1\right)^2}{\left(23^{2019}+1\right)^2}=1\)
\(\Rightarrow\dfrac{A}{B}>1\Rightarrow A>B\)
Bài toán quá hay (người ra đề quá đẳng cấp)
A = \(\dfrac{2020}{2019^2+1}\) + \(\dfrac{2020}{2019^2+2}\)+......+\(\dfrac{2020}{2019^{2^{ }}+2019}\)
A = 2020 x ( \(\dfrac{1}{2019^{2^{ }}+1}\)+ \(\dfrac{1}{2019^2+2}\)+....+\(\dfrac{1}{2019^2+2019}\))
đặtB =( \(\dfrac{1}{2019^{2^{ }}+1}\)+ \(\dfrac{1}{2019^2+2}\)+....+\(\dfrac{1}{2019^2+2019}\))⇒ A =2020.B
mặt khác ta có \(\dfrac{1}{2019^2+1}\) > \(\dfrac{1}{2019^2+2}\)>.....>\(\dfrac{1}{2019^2+2019}\)
⇔\(\dfrac{2019}{2019^2+1}\) > \(\dfrac{1}{2019^{2^{ }}+1}\)> \(\dfrac{1}{2019^{2^{ }}+2}\)+......+\(\dfrac{1}{2019^2+2019}\) > \(\dfrac{2019}{2019^{2^{ }}+2019}\)
⇔ \(\dfrac{2019}{2019^{2^{ }}+2019}\) < B < \(\dfrac{2019}{2019^{2^{ }}+1}\)
⇔ \(\dfrac{2020.2019}{2019^{2^{ }}+2019}\) <2020. B < \(\dfrac{2020.2019}{2019^{2^{ }}+1}\)
⇔ \(\dfrac{2019.2020}{2019.\left(2019+1\right)}\) < 2012.B < \(\dfrac{\left(2019+1\right).2019}{2019^{2^{ }}+1}\)
⇔ \(\dfrac{2019.2020}{2019.2020}\)< 2020.B < \(\dfrac{2019^{2^{ }}+2019}{2019^{2^{ }}+1}\) = 1 + \(\dfrac{2018}{2019^{2^{ }}+1}\)< 2
⇔ 1 < 2020 .B < 2
⇔ 1 < A < 2
⇔ A không phải là số nguyên điều phải chứng minh