K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

Tứ giác ABCD có AC vuông góc BD và AC cắt BD tạo O

\(AB^2=0A^2+OB^2\)

\(CD^2=OC^2+OD^2\)

\(AD^2=OA^2+OD^2\)

\(BC^2=OB^2+OC^2\)

\(\Rightarrow AB^2+CD^2=OA^2+OB^2+OC^2+OD^2\)(1)

\(AD^2+BC^2=OA^2+OD^2+OB^2+OC^2\)(2)

Từ (1) và 92) \(\Rightarrow AB^2+CD^2=AD^2+BC^2\)

17 tháng 9 2020

Giả sử \(\Delta\)ABC có hai đường trung tuyến BE và CF vuông góc với nhau, AD là đường trung tuyến thứ ba. Ta cần chứng minh AD^2 = BE^2 + CF^2

Trên tia đối của tia EF lấy điểm K sao cho EF = FK

Tứ giác AKCF có hai đường chéo cắt nhau tại trung điểm E của mỗi đường nên AKCF là hình bình hành => AK//FC. Mà FC\(\perp\)BE nên BE\(\perp\)AK (*)

Ta có: F là trung điểm của AB, E là trung điểm của AC nên EF là đường trung bình của\(\Delta\)ABC => EF =  1/2BC và EF//BC hay EK//BD (1)

Mà BD = 1/2BC (gt) nên EF = BD => EK = BD (do EF = EK theo cách chọn điểm phụ)           (2)

Từ (1) và (2) suy ra EKDB là hình bình hành => EB // DK (**)

Từ (*) và (**) suy ra DK \(\perp\)AK => \(\Delta\)AKD vuông tại K => AK^2 + KD^2 = AD^2 (theo định lý Py-ta-go)

Mà AK = FC (do AKCF là hình bình hành) và KD = BE (do EKDB là hình bình hành) nên AD^2 = BE^2 + CF^2 (đpcm)

3 tháng 9 2016

Gọi giao của AC và BD là O , do hai đường chéo vuông góc 
=> các tam giác : OAB, OBC, OCD, ODA là các tam giác vuông tại O 
xét tam giác OAB có AB^2 = OA^2 + OB^2 (1) 
xét tam giác ODC có DC^2 = OD^2 + OC^2 (2) 
xét tam giác OAD có AD^2 = OA^2 + OD^2 (3) 
xét tam giác OBC có BC^2 = OC^2 + OB^2 (4) 
từ (1) và (2)=> AB^2 + CD^2 = OA^2 +OB^2 +OC^2 +OD^2 (5) 
từ (3) và (4)=> BC^2 + AD^2 = OA^2 +OB^2 +OC^2 +OD^2 (6) 
từ (5) và (6) => AB^2 + CD^2 = BC^2 + AD^2 ( dpcm ) 

Mình làm đúng không các bạn ??? Đúng thì nha !!

3 tháng 9 2016

bởi vì đó là hình vuông

5 tháng 4 2019

a) Sử dụng Pytago

b) Áp dụng a)

9 tháng 8 2017

a) tgiác ABC có MN là đường trung bình => MN // AC và MN = AC/2 
tgiác DAC có PQ là đường trung bình => PQ // AC và PQ = AC/2 
vậy: MN // PQ và MN = PQ => MNPQ là hình bình hành 

mặt khác xét tương tự cho hai tgiác ABD và CBD ta cũng có: 
NP // BD và NP = BD/2 
do giả thiết AC_|_BD => AC_|_NP mà MN // AC => MN_|_NP 

tóm lại MNPQ là hình chữ nhật (hbh có một góc vuông) 

b) MNPQ là hình vuông <=> MN = NP <=> AC/2 = BD/2 <=> AC = BD 
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc và bằng nhau 
-------------

Nguồn:__|nobita|__

cách 2

a) Gọi QM giao AC tại F,AC giao BD tại K 
ta có QM là đường trung bình của tam giác ADB 
suy ra: QM// DB 
ta có MN là đường trung bình của tam giác ABC 
suy ra: MN// AC 
ta có PN là đường trung bình của tam giác BCD 
suy ra: PN// DB 
ta có PQ là đường trung bình của tam giác ADC 
suy ra: PQ// AC 
từ đó ta có : QM//PN(cùng song song DB) 
MN//PQ(cùng song song AC) 
suy ra MNPQ là hình bình hành 
QM//DB suy ra:góc AKB=góc AFM=90 độ 
MN//AC suy ra:góc AFM= góc FMN= 90 độ 
hình bình hành MNPQ có góc FMN=90 độ 
suy ra MNPQ là hình chữ nhật 
b)thuận:giả sử 
MNPQ là hình vuông 
suy ra MN=QM 
ta có MN là đường trung bình của tam giác ABC 
suy ra MN=1/2*AC 
ta có QM là đường trung bình của tam giác ADC 
suy ra QM=1/2*BD 
MN=QM 
suy ra BD= AC 
vậy tứ giác ABCD cần thêm điều kiện là AC=BD để MNPQ là hình vuông 

9 tháng 8 2017

thanks bạn mình k rùi đó

3 tháng 8 2020

a.Gọi giao của AC và BD là O , do hai đường chéo vuông góc

=> các tam giác : OAB, OBC, OCD, ODA là các tam giác vuông tại O
xét tam giác OAB có AB^2 = OA^2 + OB^2 (1)
xét tam giác ODC có DC^2 = OD^2 + OC^2 (2)
xét tam giác OAD có AD^2 = OA^2 + OD^2 (3)
xét tam giác OBC có BC^2 = OC^2 + OB^2 (4)
từ (1) và (2)=> AB^2 + CD^2 = OA^2 +OB^2 +OC^2 +OD^2 (5)
từ (3) và (4)=> BC^2 + AD^2 = OA^2 +OB^2 +OC^2 +OD^2 (6)
từ (5) và (6) => AB^2 + CD^2 = BC^2 + AD^2 (điều phải c/m )

mik chỉ làm được ý a thôi 

xin lỗi bạn

17 tháng 8 2021

bạn giỏi thật mik còn ko làm dc câu a đây :((((

 

 

17 tháng 9 2017
Định lý 1
Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.[1]

Đề bài minh hoạ:

Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh {\displaystyle NA=NC}{\displaystyle NA=NC}.

Chứng minh định lý:

Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang): {\displaystyle MF=NC}{\displaystyle MF=NC} (1)

Xét hai tam giác BMF và MAN, có: {\displaystyle {\widehat {\rm {MBF}}}={\widehat {\rm {AMN}}}}{\displaystyle {\widehat {\rm {MBF}}}={\widehat {\rm {AMN}}}} (hai góc đồng vị), {\displaystyle BM=MA}{\displaystyle BM=MA} và {\displaystyle {\widehat {\rm {BMF}}}={\widehat {\rm {MAN}}}}{\displaystyle {\widehat {\rm {BMF}}}={\widehat {\rm {MAN}}}} (hai góc đồng vị). Suy ra {\displaystyle \triangle BMF=\triangle MAN}{\displaystyle \triangle BMF=\triangle MAN} (trường hợp góc - cạnh - góc), từ đó suy ra {\displaystyle MF=AN}{\displaystyle MF=AN} (2)

Từ (1) và (2) suy ra {\displaystyle NA=NC}{\displaystyle NA=NC}. Định lý được chứng minh.

Định lý 2

Đường trung bình của tam giác thì song song với cạnh thứ ba và dài bằng nửa cạnh ấy.[2]

Cho tam giác ABC có M là trung điểm cạnh AB và N là trung điểm cạnh AC ({\displaystyle MA=MB}{\displaystyle MA=MB} và {\displaystyle NA=NC}{\displaystyle NA=NC}). Chứng minh {\displaystyle {\overline {MN}}\parallel {\overline {BC}}}{\displaystyle {\overline {MN}}\parallel {\overline {BC}}} và {\displaystyle MN={\frac {1}{2}}BC}{\displaystyle MN={\frac {1}{2}}BC}.

Chứng minh định lý:

Kéo dài đoạn MN về phía N một đoạn NF có độ dài bằng MN. Nhận thấy: {\displaystyle \triangle ANM=\triangle CNF}{\displaystyle \triangle ANM=\triangle CNF} (trường hợp cạnh - góc - cạnh)

suy ra {\displaystyle {\widehat {\rm {MAN}}}={\widehat {\rm {NCF}}}}{\displaystyle {\widehat {\rm {MAN}}}={\widehat {\rm {NCF}}}}. Hai góc này ở vị trí so le trong lại bằng nhau nên {\displaystyle {\overline {CF}}\parallel {\overline {MA}}}{\displaystyle {\overline {CF}}\parallel {\overline {MA}}} hay {\displaystyle {\overline {CF}}\parallel {\overline {BA}}}{\displaystyle {\overline {CF}}\parallel {\overline {BA}}}. Mặt khác vì hai tam giác này bằng nhau nên {\displaystyle CF=MA}{\displaystyle CF=MA}, suy ra {\displaystyle CF=MB}{\displaystyle CF=MB} (vì {\displaystyle MA=MB}{\displaystyle MA=MB}). Tứ giác BMFC có hai cạnh đối BM và FC vừa song song, vừa bằng nhau nên BMFC là hinh binh hanh, suy ra {\displaystyle {\overline {MF}}\parallel {\overline {BC}}}{\displaystyle {\overline {MF}}\parallel {\overline {BC}}} hay {\displaystyle {\overline {MN}}\parallel {\overline {BC}}}{\displaystyle {\overline {MN}}\parallel {\overline {BC}}}. Mặt khác, {\displaystyle MN=NF={\frac {1}{2}}MF}{\displaystyle MN=NF={\frac {1}{2}}MF}, mà {\displaystyle MF=BC}{\displaystyle MF=BC} (tính chất hình bình hành), nên {\displaystyle MN={\frac {1}{2}}BC}{\displaystyle MN={\frac {1}{2}}BC}. Định lý được chứng minh.

16 tháng 9 2017

D/L: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.

ta lay vd 1 de bai de chung minh:

Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh {\displaystyle NA=NC}{\displaystyle NA=NC}

ta chung minh dinh ly

Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang): {\displaystyle MF=NC}{\displaystyle MF=NC} (1)

Xét hai tam giác BMF và MAN, có: {\displaystyle {\widehat {\rm {MBF}}}={\widehat {\rm {AMN}}}}{\displaystyle {\widehat {\rm {MBF}}}={\widehat {\rm {AMN}}}} (hai góc đồng vị), {\displaystyle BM=MA}{\displaystyle BM=MA} và {\displaystyle {\widehat {\rm {BMF}}}={\widehat {\rm {MAN}}}}{\displaystyle {\widehat {\rm {BMF}}}={\widehat {\rm {MAN}}}} (hai góc đồng vị). Suy ra {\displaystyle \triangle BMF=\triangle MAN}{\displaystyle \triangle BMF=\triangle MAN} (trường hợp góc - cạnh - góc), từ đó suy ra {\displaystyle MF=AN}{\displaystyle MF=AN} (2)

Từ (1) và (2) suy ra {\displaystyle NA=NC}{\displaystyle NA=NC}. ( dieu phai chung minh )

D/L : Đường trung bình của tam giác thì song song với cạnh thứ ba và dài bằng nửa cạnh ấy

VD : Cho tam giác ABC có M là trung điểm cạnh AB và N là trung điểm cạnh AC ({\displaystyle MA=MB} và {\displaystyle NA=NC}). Chứng minh {\displaystyle {\overline {MN}}\parallel {\overline {BC}}} và {\displaystyle MN={\frac {1}{2}}BC}

chung minh dinh li

Kéo dài đoạn MN về phía N một đoạn NF có độ dài bằng MN. Nhận thấy: {\displaystyle \triangle ANM=\triangle CNF}{\displaystyle \triangle ANM=\triangle CNF} (trường hợp cạnh - góc - cạnh)

suy ra {\displaystyle {\widehat {\rm {MAN}}}={\widehat {\rm {NCF}}}}{\displaystyle {\widehat {\rm {MAN}}}={\widehat {\rm {NCF}}}}. Hai góc này ở vị trí so le trong lại bằng nhau nên {\displaystyle {\overline {CF}}\parallel {\overline {MA}}}{\displaystyle {\overline {CF}}\parallel {\overline {MA}}} hay {\displaystyle {\overline {CF}}\parallel {\overline {BA}}}{\displaystyle {\overline {CF}}\parallel {\overline {BA}}}. Mặt khác vì hai tam giác này bằng nhau nên {\displaystyle CF=MA}{\displaystyle CF=MA}, suy ra {\displaystyle CF=MB}{\displaystyle CF=MB} (vì {\displaystyle MA=MB}{\displaystyle MA=MB}). Tứ giác BMFC có hai cạnh đối BM và FC vừa song song, vừa bằng nhau nên BMFC là hình bình hành, suy ra {\displaystyle {\overline {MF}}\parallel {\overline {BC}}}{\displaystyle {\overline {MF}}\parallel {\overline {BC}}} hay {\displaystyle {\overline {MN}}\parallel {\overline {BC}}}{\displaystyle {\overline {MN}}\parallel {\overline {BC}}}. Mặt khác, {\displaystyle MN=NF={\frac {1}{2}}MF}{\displaystyle MN=NF={\frac {1}{2}}MF}, mà {\displaystyle MF=BC}{\displaystyle MF=BC} (tính chất hình bình hành), nên {\displaystyle MN={\frac {1}{2}}BC}{\displaystyle MN={\frac {1}{2}}BC}