K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

Đặt \(3^{13579}=m\).Do (3;13579)=1 nên UCLN(\(13579^k\);m)=1.Với mọi số tự nhiên K Xét m+1 số 13579;\(13579^2;...;13579^{m+1}\).Theo nguyên Lý Dirichlet trong m+1 số trên có ít nhất 2 số chia cho m có cùng số dư

Tức là tồn tại hai số tự nhiên a;b với a>b sao cho hiệu a-b là số tự nhiên khác 0

Đặt a-b=n nên tồn tại số tự nhiên khác 0 thỏa mãn \(13579^n-1\)chia hết \(3^{13579}\)

13 tháng 6 2016

ko pit làm

9 tháng 9 2016

Dễ thế mà cũng không biết. Ngu

11 tháng 8 2020

\(60=3.4.5\)

Ta cần chứng minh xyz chia hết cho 3 ; 4 và 5

\(∗\)Giả sử cả x ; y và z đều không chia hết cho 3

Khi đó x ; y và z chia cho 3 dư 1 hoặc dư 2 => x2 ; y2 và z2 chia cho 3 dư 1

\(\Rightarrow x^2+y^2\equiv1+1=2\) ( mod 3 )

Vô lí vì  \(z^2\equiv1\) ( mod 3 )

Vậy tồn tại ít nhất 1 số chia hết cho 3, do đó \(xyz⋮3\) ( 1 )

\(∗\)Giả sử cả x ; y và z không chia hết cho 4

Khi đó x ; y và z chia cho 4 dư 1 ; 2 hoặc 3

- TH1 : Cả x ; y và z lẻ => x2 ; y2 và z2 chia 4 dư 1

\(\Rightarrow x^2+y^2\equiv1+1=2\) ( mod 4 ) ( loại ) 

- TH2 : Có ít nhất 2 số chẵn => xyz chia hết cho 4

- TH3 : Có 1 số chẵn và 2 số lẻ

+) Với x ; y lẻ thì  \(z^2=x^2+y^2\equiv1+1=2\) ( mod 4 ) ( loại do z chẵn nên \(z^2\equiv0\) ( mod 4 ) )

+) Với x ; z lẻ thì \(y^2=z^2-x^2\equiv\left(z-x\right)\left(z+x\right)\) .Ta có bảng sau : 

 z x z-
 4m + 1 4n + 1 4( m - n )
 4m + 3 4n + 1 4 ( n - n ) + 2

Các trường hợp khác tương tự

Ta luôn có \(y^2=\left(z-x\right)\left(z+x\right)⋮8\)  . Trong khi đó ykhông chia hết cho 4 nhưng lại chia hết cho 8 => Mâu thuẫn 

Vậy tồn tại ít nhất 1 số chia hết cho 4 \(\Rightarrow xyz⋮4\) ( 2 )

\(∗\)Giả sử cả x ; y và z không chia hết cho 5

Khi đó x ; y và z chia cho 5 dư 1 ; 2 ; 3 hoặc 4 => x2 ; y2 và z2 chia cho 5 dư 1 hoặc -1

- TH1 : \(x^2\equiv1\) ( mod 5 ) ; \(y^2\equiv1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv2\) ( mod 5 ) ( loại )

- TH2 : \(x^2\equiv-1\) ( mod 5 ) ; \(y^2\equiv-1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv-1\) ( mod 5 ) ( loại )

- TH3 : \(x^2\equiv1\) ( mod 5 ) ; \(y^2\equiv-1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv0\) ( mod 5 ) ( loại )

Vậy tồn tại ít nhất một số chia hết cho 5 \(\Rightarrow xyz⋮5\) ( 3 )

Từ ( 1 ) ; ( 2 ) và ( 3 ) \(\Rightarrow xyz⋮3.4.5=60\left(đpcm\right)\)

11 tháng 8 2020

cảm ơn bạn Death Note đã giúp mk nhé!