Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
A)Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có:
2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
=>k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=>4k(k+1) chia hết cho 8(ĐPCM)
Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=> 4k(k+1) chia hết cho 8
a) Gọi 2 số chẵn liên tiếp là: 2k; 2k+2
Theo đề bài, ta có: 2k(2k+2) chia hết cho 8
Để 2k(2k+2) chia hết cho 8 thì 2k(2k+2) phải chia hết cho 2 (vì 8 = 2.2.2)
Mà 2k(2k+2) chiia hết cho 2 vì có 1 thừa số 2 trong biểu thức
=> 2k(2k+2) chia hết cho 8
1/ Bài giải
Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp.
Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4=> số còn lại chia hết cho 2
=> Tích 4 số tự nhiên liên tiếp chia hết cho 8. ﴾1﴿
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 ﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => Tích 4 số tự nhiên liên tiếp chia hết cho 3.8
=>Tích 4 số tự nhiên liên tiếp chia hết cho 24
2/ Bài giải
Vì trong 4 số tự nhiên chẵn có ít nhất 1 số chia hết cho 4
Và 2 số còn lại chia hết cho 2
=> Chia hết cho 2 x 2 x 4 = 16
Mà trong 3 số đó phải có 1 số chia hết cho 3
= > Tích chia hết cho : 3 . 16 = 48
=> Tích của 3 số tự nhiên chẵn liên tiếp thì chia hết cho 48.
3/ Bài giải
‐ tập hợp con không chứa phần tử nào: tập rỗng => có 1 tập hợp
‐ tập hợp con có 1 phần tử là : {a}; {b}; {c} ; {d} => có 4 tập hợp
‐ tập hợp có 2 phần tử là: {a;b}; {a;c}; {a;d}; {b;c}; {b;d}; {c;d}; => có 6 tập hợp
‐ tập hợp có 3 phần tử là: {a;b;c}; {a;b;d} ; {a;c;d}; {b;c;d} => có 4 tập hợp
‐ tập hợp có 4 phần tử là chính A = {a;b;c;d} => có 1 tập hợp
Vậy có tất cả là 1 + 4 + 6 + 4 + 1 = 16 tập hợp
3/Các tập hợp con của A là :
{a},{b},{c}
{a;b},{a;c},{b;c}
{a;b;c}
k mình nha
a)Gọi 3 số chẵn liên tiếp là 2k, 2k+2, 2k+4
Ta có: 2k(2k+2)(2k+4)=8k(k+1)(k+2)
Ta lại có: k, k+1,k+2 là 3 số nguyên liên tiếp nên \(k\left(k+1\right)\left(k+2\right)⋮2\)và \(k\left(k+1\right)\left(k+2\right)⋮3\)
vì (2,3)=1 nên \(k\left(k+1\right)\left(k+2\right)⋮2.3=6\)
lúc đó \(8k\left(k+1\right)\left(k+2\right)⋮8.6=48\)
Vậy tích của 3 số chẵn liên tiếp sẽ chia hết cho 48 (ĐPCM)
Gọi 3 số chẵn liên tiếp cần tìm là : 2a - 2 ; 2a ; 2a +2 ( a thuộc N*)
Ta có : (2a - 2 ) * 2a * 2a + 2 = 2 ( a-1) * 2a * 2 ( a +1 ) = 8a ( a-1)(a+1)
Trong ba số tự nhiên thì chắc chắn có một số chia hết cho 2 và 1 số chia hết cho 3
=> Tích đó chia hết cho : 8*2*3=64
=> Chia hết cho 48
a) Gọi ba số chẵn liên tiếp là: a; a+2; a+4
Ta có: a+a+2+a+4=3a+6
Vì 6 chia hết cho 6=>3a+6 chia hết cho 6
=>tổng của ba số chắn liên tiếp chia hết cho 6
a.gọi 3 số tự nhiên liên tiếp lạ:
a;a+2;a+4(a thuộc n;a=2k)
có
a+a+2+a+4=3a+6=3.2k+6 chia hết cho 6
b.gọi 3 số lẻ liên tiếp là:
a+1,a+3;a+5(a thuộc n;a=2k)
có:a+5+a+1+a+3=3a+9=6k+9
=6k+9=6k+9 ko chi hết cho 6
c.gọi ......là:a,a+2,a+4;a+6;a+8(a thuộc n;a=2k)
a+a+2+a+4+a+6+a+8=5a+20=10k+20=10(k+2) chia hết cho 10=>đpcm
d.tương tự trên có
a+1+a+3+a+5+a+7+a+9=5a+25=10k+25=10k+20+5=10(k+2)+5 chia 10 dư 5=>đpcm