Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
_ Gọi 5 số tự nhiên liên tiếp đó là : a , a + 1 , a + 2 , a + 3 , a + 4 .
Theo bài ra , ta có :
a x ( a + 1 ) x ( a + 2 ) x ( a + 3 ) x ( a + 4 )
= a x 5 x ( 1 x 2 x 3 x 4 )
= a x 5 x 24
Mà 5 x 24 = 120 .
=> a chia hết cho 120 .
_ Vậy tích của 5 số tự nhiên liên tiếp chia hết cho 120 .
Vô đường link này nè bạn
http://olm.vn/hoi-dap/question/144072.html
Gọi 5 số tự nhiên liên tiếp là a,a+1,a+2,a+3,a+4
Ta có : a . a+1 . a+2 . a+3. a+4
= (a+a+a+a+a) . (1.2.3.4)
= 5a .24
= 120a chia hết cho 120
=> a.(a+1).(a+2).(a+3).(a+4) chia hết cho 120
Vậy tích của 5 số tự nhiên liên tiếp chia hết cho 120
Giải tương tự bài 3 số chia hết cho 6 đó bạn. Chia hết từ 2 => 5 sẽ chia hết cho 120
Gọi 5 số tự nhiên liên tiếp có dạng:a,a.1,a.2,a.3,a.4
Theo đề bài ta có:a.(a.1)+(a.2)+(a.3).(a.4)
=a.5.(1.2.3.4)
=a.5.24
=a.120chia hết 120
suy ra :tích của 5 số tự nhiên liên tiếp chia hết cho 120
Gọi 5 số tự nhiên liên tiếp có dạng:a,a.1,a.2,a.3,a.4
Theo đề bài ta có:a.(a.1)+(a.2)+(a.3).(a.4)
=a.5.(1.2.3.4)
=a.5.24
=a.120chia hết 120
Vậy tích của 5 số tự nhiên liên tiếp chia hết cho 120
Lời giải:
Gọi $A=a(a+1)(a+2)(a+3)(a+4)$ là tích 5 số tự nhiên liên tiếp $(a\in\mathbb{N})$
Để cm $A\vdots 120$ thì ta sẽ cm $A\vdots 3,5,8$
Thật vậy:
Nếu $a\vdots 3$ thì hiển nhiên $A\vdots 3$
Nếu $a$ chia 3 dư $1$ thì $a+2\vdots 3\Rightarrow A\vdots 3$
Nếu $a$ chia 3 dư $2$ thì $a+1\vdots 3\Rightarrow A\vdots 3$
Vậy $a\vdots 3$
-----------
Tương tự, xét số dư của $a$ khi chia $5$ ta cũng cm được $A\vdots 5$
-----------
CM $A\vdots 8$.
Nếu $a$ chẵn. Đặt $a=2k$ với $k$ tự nhiên. Khi đó:
$A=2k(2k+1)(2k+2)(2k+3)(2k+4)=8k(2k+1)(2k+3)\vdots 8$
Nếu $a$ lẻ. Đặt $a=2k+1$ với $k$ tự nhiên. Khi đó:
$A=(2k+1)(2k+2)(2k+3)(2k+4)(2k+5)=4(2k+1)(2k+3)(2k+5)(k+1)(k+2)$
Vì $k+1, k+2$ là 2 số liên tiếp nên luôn có 1 số chẵn 1 số lẻ.
$\Rightarrow (k+1)(k+2)\vdots 2$
$\Rightarrow A=4(2k+1)(2k+3)(2k+5)(k+1)(k+2)\vdots 8$
Vậy $A\vdots 8$
Từ $A\vdots 3, 8,5$ suy ra $A\vdots 120$
b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.
Theo đề bài ta có :
A = a(a + 1) (a + 2) + 6
Ta có 6 = 3x2 mà ( 3,2) = 1
A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2
A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3
Vậy tích của 3 STN liên tiếp chia hết cho 6.
gọi 5 số liên tiếp đó là : a, a + 1, a + 2, a + 3,a + 4
=> tích của chúng là : a . (a + 1) . (a + 2) . (a + 3) . (a + 4)
trong tích của 5 số liên tiếp có ít nhất là 2 số chẵn liên tiếp nhau. Tích 2 số chẵn liên tiếp nhau chia hết cho 8 => a . (a + 1) . (a + 2) . (a + 3) . (a + 4) \(⋮\)8 (1)
trong tích của 5 số liên tiếp sẽ có 1 số chia hết cho 5 => a . (a + 1) . (a + 2) . (a + 3) . (a + 4) \(⋮\)5 (2)
trong tích của 5 số liên tiếp có tích của 3 số tự nhiên liên tiếp. Tích của 3 số tự nhiên liên tiếp chia hết cho 3 => a . (a + 1) . (a + 2) . (a + 3) . (a + 4) \(⋮\)3 (3)
Từ (1), (2) và (3) => a . (a + 1) . (a + 2) . (a + 3) . (a + 4) \(⋮\)120 vì 5 . 8 . 3 = 120 mà a . (a + 1) . (a + 2) . (a + 3) . (a + 4) \(⋮\)5;8;3
Gọ 5 so tu nhien lien tiep co dang la :
a,a.1,a.2,a.3,a.4
Theo de bai ta co :
a.(a.1)+(a.2)+(a.3)+(a.4)
=a.5.(1.2.3.4)
=a.5.24
=a.120 chia het cho 120
Suy ra tich cua 5 so tu nhien lien tiep chia het cho 120
****