K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

 ta có: \(a+b+c=2p\Rightarrow2p-a-b-c=0\)

mặt khác ta có: \(\frac{p}{p-a}+\frac{p}{p-b}+\frac{p}{p-c}=p\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\)

                                                              \(=\left(p-a+p-b+p-c\right)\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\)       (*)

                                                             ( vì \(2p-a-b-c=0\))

                             Đặt : \(p-a=x\left(x>0\right);p-b=y\left(y>0\right);p-c=z\left(z>0\right)\)      

                   =>(*)<=>\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)               

mà \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)                  (tự chứng minh)

nên \(\frac{p}{p-a}+\frac{p}{p-b}+\frac{p}{p-c}\ge9\)                      =>đpcm