Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : n(n+5) - (n-3)(n+2) = n2 + 5n - n2 - 2n + 3n + 6
= 6n + 6
= 6(n+1) \(⋮\) 6 với mọi n
Vậy n(n+5) - (n-3)(n+2) chia hết cho 6 với mọi n là số nguyên
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2+3n+2n+6\)
\(=\left(n^2-n^2\right)-\left(5n-3n-2n\right)+6\)
\(=6⋮6\) (đpcm)
Câu hỏi của I lay my love on you - Toán lớp 8 - Học toán với OnlineMath dv
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)^{\left(1\right)}\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left[\left(n-2\right)\left(n+2\right)+5\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Vì n(n-2)(n+2)(n - 1)(n + 1) chia hết cho 5
5n(n - 1)(n + 1) chia hết cho 5
=> n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) chia hết cho 5
=> \(n^5-n⋮5\)(2)
Vì n , (n-1) , (n+1) là 3 số tự nhiên liên tiếp nên luôn tồn tại 1 số chia hết cho 2 và 3 trong 3 số này
Mà ( 2 ; 3 ) = 1
=> n(n+1)(n-1) chia hết cho 2.3=6
=> n(n+1)(n-1)(n²+1 ) chia hết cho 6
Hay n^5 - n chia hết cho 6 (3)
Từ (2) , (3) và ( 5 ; 6 ) = 1
=> n^5 -n chia hết cho 5.6 = 30
Vậy n^5 - n chia hết cho 30
Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22
= (5n + 2 - 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 5 nên 5n(5n + 4) 5 ∀n ∈ Z.
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
=-5n
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5
vay n(2n-3)-2n(n+1) chia het cho 5
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\) = \(2n^2-3n-2n^2-2n\)
= \(-5n\)
Vì \(-5⋮5\) => -5n \(⋮\) 5
=> \(n\left(2n-3\right)-2n\left(n+1\right)\) \(⋮\) 5 với mọi n \(\in\) Z
Ta có : \(\left(5n+2\right)^2-4\)
\(=\left(5n+2-2\right).\left(5n+2+2\right)\)
\(=5n\left(5n+4\right)\)
Vì \(5⋮5\) nên \(\left(5n+2\right)^2-4⋮5\forall n\in Z\)
Bài giải:
Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22
= (5n + 2 - 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 ⋮⋮ 5 nên 5n(5n + 4) ⋮⋮ 5 ∀n ∈ Z.
\((5n + 2)^2 - 4\) \(= (5n +2 )^2 - 2^2\)
\(= (5n +2 - 2) (5n + 2 + 2 )\)
\(= 5n(5n + 4)\)
\(\Rightarrow\) \(5\) \(⋮\) \(5\) nên \(5n(5n +4)\) \(⋮\) \(5\) với mọi số nguyên thuộc \(n\)
Vậy biểu thức \((5n + 2)^2 - 4\) chia hết cho \(5\) với mọi số nguyên thuộc \(n\)
chứng minh rằng n5−nchia hết cho 5, với mọi n là số nguyên
Giải:Ta có:n5-n=n(n4-1)=n(n2+1)(n2-1)
=n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2-4+5)=n(n-1)(n+1)(n2-4)+5(n-1)n(n+1)
=\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\) chia hết cho 5
Vậy.........................