Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
bài dài nên cô sẽ gợi ý An theo bước sau:
đầu tiên ta chứng minh: \(0< a< b;\)0<m<n thì : \(\frac{a+m}{b+m}< \frac{a+n}{b+n}\)(1)
thật vậy: \(\frac{a+m}{b+m}< \frac{a+n}{b+n}\Leftrightarrow\frac{a+m}{b+m}-\frac{a+n}{b+n}< 0\Leftrightarrow\left(n-m\right)\left(a-b\right)
< 0\)(vì n-m>0; a-b<0)
TH1: nếu x và y cùng dấu khi đó: \(\left|x\right|\ge\left|x-y\right|\) hoặc \(\left|y\right|>\left|x-y\right|\)( chứng minh bằng cách chia hai trường hợp x,y>0; x<y<0)
giả sử |x|>|x-y|
ÁP dụng bất đẳng thức (1) với |x| và |x-y|, 1 và 2008 ta có:\(\frac{\left|x\right|}{\left|x\right|+2008}>\frac{\left|x-y\right|}{\left|x-y\right|+2008}\)suy ra bất đẳng thức đúng.
TH2: x, y trái dấu khi đó: \(\left|x-y\right|=\left|x\right|+\left|y\right|\)
ta có: \(\frac{\left|x-y\right|}{\left|x-y\right|+2008}=\frac{\left|x\right|+\left|y\right|}{\left|x\right|+\left|y\right|+2008}\)
ta thấy: \(\frac{\left|x\right|}{\left|x\right|+2008}>\frac{\left|x\right|}{\left|x\right|+\left|y\right|+2008}\)
\(\frac{\left|y\right|}{\left|y\right|+2008}>\frac{\left|y\right|}{\left|x\right|+\left|y\right|+2008}\)
cộng hai vế của bất đẳng thức ta suy ra điều phải chứng minh.
TH3: nếu x = y = 0 thì bất đẳng thức đúng.
TA CÓ ĐIỀU PHẢI CHỨNG MINH.
\(=\frac{11}{-5}\cdot\frac{-9}{11}\cdot\frac{15}{-14}\cdot\frac{2}{5}+-\frac{2}{77}\cdot\frac{5}{-3}\)
\(=\frac{9}{5}\cdot-\frac{15}{14}\cdot\frac{2}{5}+\frac{10}{231}\)
\(=-\frac{841}{1155}\)
a) \(4\frac{5}{9}:\left(-\frac{5}{7}\right)+\frac{49}{9}:\left(-\frac{5}{7}\right)=\frac{41}{9}:\left(-\frac{5}{7}\right)+\frac{49}{9}:\left(-\frac{5}{7}\right)\)
\(=\frac{41}{9}\cdot\left(-\frac{7}{5}\right)+\frac{49}{9}\cdot\left(-\frac{7}{5}\right)=\left(\frac{41}{9}+\frac{49}{9}\right)\cdot\left(-\frac{7}{5}\right)=10\cdot\left(-\frac{7}{5}\right)=-14\)
b) \(\left(\frac{-3}{5}+\frac{4}{9}\right):\frac{7}{11}+\left(\frac{-2}{5}+\frac{5}{9}\right):\frac{7}{11}\)
\(=\left(\frac{-3}{5}+\frac{4}{9}+\frac{-2}{5}+\frac{5}{9}\right):\frac{7}{11}\)
\(=\left(\frac{-3}{5}+\frac{-2}{5}+\frac{4}{9}+\frac{5}{9}\right):\frac{7}{11}\)
\(=\left(-1+1\right):\frac{7}{11}=0\cdot\frac{11}{7}=0\)
c) \(\left(\frac{3}{4}\right)^4\cdot\left(\frac{8}{9}\right)^2=\left(\frac{3}{4}\right)^2\cdot\left(\frac{3}{4}\right)^2\cdot\left(\frac{8}{9}\right)^2=\left(\frac{3}{4}\cdot\frac{3}{4}\cdot\frac{8}{9}\right)^2\)
\(=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
d) \(\left(-\frac{3}{5}\right)^6\cdot\left(-\frac{5}{3}\right)^5=\left(-\frac{3}{5}\right)^5\cdot\left(-\frac{3}{5}\right)\cdot\left(-\frac{5}{3}\right)^5=\left[\left(-\frac{3}{5}\right)\cdot\left(-\frac{5}{3}\right)\right]^5\cdot\left(-\frac{3}{5}\right)\)
\(=1^5\cdot\left(-\frac{3}{5}\right)=1\cdot\left(-\frac{3}{5}\right)=-\frac{3}{5}\)
e) \(\frac{8^{14}}{4^4\cdot64^5}=\frac{\left(2^3\right)^{14}}{\left(2^2\right)^4\cdot\left(2^6\right)^5}=\frac{2^{42}}{2^8\cdot2^{30}}=\frac{2^{42}}{2^{38}}=2^4=16\)
f) \(\frac{9^{10}\cdot27^7}{81^7\cdot3^{15}}=\frac{\left(3^2\right)^{10}\cdot\left(3^3\right)^7}{\left(3^4\right)^7\cdot3^{15}}=\frac{3^{20}\cdot3^{21}}{3^{28}\cdot3^{15}}=\frac{3^{41}}{3^{43}}=3^{-2}=\frac{1}{3^2}=\frac{1}{9}\)
Ta có:\(\left(\frac{9}{11}-0,81\right)^{2005}\)=\(\left(\frac{9}{11}-\frac{81}{100}\right)^{2005}=\left(\frac{9}{1100}\right)^{2005}< \left(\frac{10}{1100}\right)^{2005}=\left(\frac{1}{110}\right)^{2005}\)
Mà \(\left(\frac{1}{110}\right)^{2005}< \left(\frac{1}{100}\right)^{2005}=\left[\left(\frac{1}{10}\right)^2\right]^{2005}=\left(\frac{1}{10}\right)^{4010}=\frac{1}{10^{4010}}\)
Vậy \(\left(\frac{9}{11}-0,81\right)^{2005}< \frac{1}{10^{4010}}\)
Chứng minh rằng: \(\left(\frac{9}{11}-0,81\right)^{2008}=\left(\frac{9}{11}\right)^{2008}\times\frac{1}{10^{4016}}\)
Có: \(\left(\frac{9}{11}-0,81\right)^{2008}=\left(\frac{9}{1100}\right)^{2008}\)
\(\left(\frac{9}{11}\right)^{2008}\times\frac{1}{10^{4016}}=\frac{9^{2008}}{11^{2008}\times\left(10^2\right)^{2008}}=\frac{9^{2008}}{11^{2008}\times100^{2008}}=\frac{9^{2008}}{\left(11\times100\right)^{2008}}=\frac{9^{2008}}{1100^{2008}}=\left(\frac{9}{1100}\right)^{2008}\)
Vì: \(\left(\frac{9}{1100}\right)^{2008}=\left(\frac{9}{1100}\right)^{2008}\Rightarrow\left(\frac{9}{11}-0,81\right)^{2008}=\left(\frac{9}{11}\right)^{2008}\times\frac{1}{10^{4016}}\)