\(\frac{a+b}{\sqrt{a\left(2a+b\right)}+\sqrt{b\left(2b+a\right)}}\ge\frac{1}{2}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

Ta có \(a^2b^2+b^2c^2+c^2a^2\geq a^2b^2c^2\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq 1\)

BĐT cần chứng minh tương đương với \(\frac{\frac{1}{c^3}}{\frac{1}{a^2}+\frac{1}{b^2}}+\frac{\frac{1}{b^3}}{\frac{1}{a^2}+\frac{1}{c^2}}+\frac{\frac{1}{a^3}}{\frac{1}{b^2}+\frac{1}{c^2}}\geq \frac{\sqrt{3}}{2}\)

Đặt \((\frac{1}{a},\frac{1}{b},\frac{1}{c})=(x,y,z)\). Bài toán trở thành: 

Cho \(x,y,z>0|x^2+y^2+z^2\geq 1\). CMR \(P=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\geq \frac{\sqrt{3}}{2}\)

Lời giải:

 Áp dụng BĐT Cauchy -Schwarz:

\(P=\frac{x^4}{xy^2+xz^2}+\frac{y^4}{yz^2+yx^2}+\frac{z^4}{zx^2+zy^2}\geq \frac{(x^2+y^2+^2)^2}{x^2(y+z)+y^2(x+z)+z^2(x+y)}\) (1)

Không mất tính tổng quát, giả sử \(x\geq y\geq z\Rightarrow x^2\geq y^2\geq z^2\) 

Và \(y+z\leq z+x\leq x+y\). Khi đó, áp dụng BĐT Chebyshev: 

\(3[x^2(y+z)+y^2(x+z)+z^2(x+y)]\leq (x^2+y^2+z^2)(y+z+x+z+x+y)\)

\(\Leftrightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)(x+y+z)}{3}\)

Theo hệ quả của BĐT Am-Gm thì: \((x+y+z)^2\leq 3(x^2+y^2+z^2)\Rightarrow x+y+z\leq \sqrt{3(x^2+y^2+z^2)}\)

\(\Rightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}{3}\) (2)

Từ (1),(2) suy ra \(P\geq \frac{3(x^2+y^2+z^2)^2}{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}=\frac{\sqrt{3(x^2+y^2+z^2)}}{2}\geq \frac{\sqrt{3}}{2}\)

Ta có đpcm

Dáu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Leftrightarrow a=b=c=\sqrt{3}\)

5 tháng 5 2020

Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)

Khi đó giả thiết được viết lại là \(x^2+y^2+z^2\ge1\)và ta cần chứng minh \(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\ge\frac{\sqrt{3}}{2}\)(*)

Áp dụng BĐT Bunhiacopxki dạng phân thức, ta được:

\(VT_{\left(^∗\right)}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(z^2+x^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\)\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\)

Đến đây ta đi chứng minh \(\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\ge\frac{\sqrt{3}}{2}\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)^2\)\(\ge\sqrt{3}\left[x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)\right]\)

Ta có: \(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\)\(\le\frac{1}{\sqrt{2}}\sqrt{\left(\frac{2x^2+y^2+z^2+y^2+z^2}{3}\right)^3}\)

\(=\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

Tương tự ta có: \(y\left(z^2+x^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

\(z\left(x^2+y^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

Cộng theo vế của 3 BĐT trên, ta được: 

\(\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le\frac{2\sqrt{3}}{3}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

\(\Leftrightarrow\sqrt{3}\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

Cuối cùng ta cần chứng minh được

\(2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\le2\left(x^2+y^2+z^2\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2\ge1\)(đúng)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow a=b=c=\sqrt{3}\)

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

11 tháng 1 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\)

\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}\)

\(=\sqrt{4\left(a+b\right)^2}=2\left(a+b\right)\)

\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

28 tháng 5 2018

Áp dụng Cauchy-Schwarz ta có:

\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{1}{2}\)

31 tháng 3 2017

Ta có: 

\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\)

\(\ge\frac{2\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}=\frac{2\left(a+b\right)}{4\left(a+b\right)}=\frac{1}{2}\)

Dấu = xảy ra khi \(a=b\)

31 tháng 3 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}=\sqrt{a}\sqrt{3a+b}+\sqrt{b}\sqrt{3b+a}\)

\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}=2\left(a+b\right)\)

\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

Đẳng thức xảy ra khi \(a=b\)

16 tháng 8 2021

\(A=\left(1+\frac{2c}{a+b}\right)\left(1+\frac{2b}{c+a}\right)\left(1+\frac{2a}{b+c}\right)\)

\(A=\frac{\left(a+c\right)+\left(c+b\right)}{a+b}\cdot\frac{\left(b+a\right)+\left(b+c\right)}{c+a}\cdot\frac{\left(a+b\right)+\left(a+c\right)}{b+c}\)

vì a;b;c dương, theo cô si ta có : 

\(\left(a+c\right)+\left(c+b\right)\ge2\sqrt{\left(a+c\right)\left(c+b\right)}\Rightarrow1+\frac{2c}{a+b}\ge\frac{2\sqrt{\left(a+c\right)\left(c+b\right)}}{a+b}\)

\(\left(b+a\right)+\left(b+c\right)\ge2\sqrt{\left(b+a\right)\left(b+c\right)}\Rightarrow1+\frac{2b}{c+a}\ge\frac{2\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}\)

\(\left(a+b\right)+\left(a+c\right)\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\Rightarrow1+\frac{2a}{b+c}\ge\frac{2\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}\)

\(\Rightarrow A\ge8\cdot\frac{\sqrt{\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2}}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\Rightarrow A\ge8\)

16 tháng 8 2021

Ta có : \(1+\frac{2c}{a+b}=\frac{\left(a+c\right)\left(b+c\right)}{a+b}\ge\frac{2\sqrt{\left(a+c\right)\left(b+c\right)}}{a+b}\)

tương tự \(1+\frac{2b}{c+a}\ge\frac{2\sqrt{\left(b+c\right)\left(b+a\right)}}{c+a}\)\(1+\frac{2a}{b+c}\ge\frac{2\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}\)

Suy ra : \(\left(1+\frac{2c}{a+b}\right)\left(1+\frac{2b}{c+a}\right)\left(1+\frac{2a}{b+c}\right)\ge\frac{8\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=8\) 

Dấu "=" xảy ra <=> a = b = c 

22 tháng 2 2022

Áp dụng đánh giá \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) , ta được:

\(\left(\frac{a}{b+2c}\right)^2+\left(\frac{b}{c+2a}\right)^2+\left(\frac{c}{a+2b}\right)^2\ge\frac{1}{3}\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\)

Vậy ta cần chứng minh:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta được:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)

Vậy theo đánh giá ta được: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\), do đó ta được:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)

Vậy bất đẳng thức ban đầu được chứng minh.