K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

Đặt\(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk ;c=dk\)

\(\Rightarrow\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)

     \(\frac{c-d}{d}=\frac{dk-d}{kd}=\frac{d\left(k-1\right)}{kd}=\frac{k-1}{k}\left(2\right)\)

Từ (1) và (2)=> \(\frac{a-b}{a}=\frac{c-d}{c}\)

Bài 1: D

Bài 2:

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)

\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)

7 tháng 7 2018

Ta có : 

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\left(ADTCDTSBN\right)\)

\(\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{\left(a-b\right)^3}{\left(c-d\right)^3}\)

ADTCDTSBN , ta có : 

\(\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\left(\frac{a-b}{c-d}\right)^3\left(Đpcm\right)\)

7 tháng 7 2018

Sửa lại dòng cuối : 

\(\left(\frac{a-b}{c-d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\left(đpcm\right)\)

7 tháng 7 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\)

Nên \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

 Suy ra : \(\frac{a}{c}=\frac{a-b}{c-d}\)

Vậy : \(\frac{a-b}{a}=\frac{c-d}{c}\)

18 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=>a=bk,c=dk

a,Ta có \(\frac{a-b}{a}-\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}\frac{k-1}{k}.1\)

Tương tự ta có \(\frac{c-d}{c}=\frac{k-1}{k}.2\)

Từ (1) và (2) suy ra đều phải chứng minh .

b,Ta có \(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}.3\)

Tương tự ta có \(\frac{a-b}{c-b}=\frac{b}{d}.4\)

Từ (3) và (4) suy ra đều phải chứng minh

22 tháng 1 2019

Đặt: \(\frac{a}{b}=\frac{c}{d}=k\)(*)

=> a=bk, c=dk.

Từ đó ta có : \(\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)(**)

Và: \(\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)(***)

Từ (*),(**) và (***) suy ra : \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

22 tháng 1 2019

Ta có :

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\left(1\right)}\)

Thay vào biểu thức \(\frac{a+c}{b+d}\) ta có :

<=> \(\frac{bk+dk}{b+d}\Leftrightarrow\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Thay vào biểu thức \(\frac{a-c}{b-d}\) ta có:

<=> \(\frac{bk-dk}{b-d}\Leftrightarrow\frac{k\left(b-d\right)}{b-d}=k\left(3\right)\)

Từ (1) ,(2) và (3) => đpcm

26 tháng 6 2015

\(\frac{a}{b}<\frac{c}{d}\) => ad < bc

Do đó ad < ab + ad = a.(b+d) => \(\frac{a}{b}<\frac{a+b}{b+d}\) (1)

và bc + cd = c.(b+d) < bc => \(\frac{a+c}{b+d}<\frac{c}{d}\) (2)

Từ (1) và (2) => ĐPCM

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

b) Ta có \(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)