\(\frac{1}{\left[a,b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

mình làm ngắn gọn thôi

Giả sử a < b < c thì a \(\ge\)2, b \(\ge\)3, c \(\ge\)5. Ta có :

\(\frac{1}{\left[a,b\right]}=\frac{1}{ab}\le\frac{1}{6},\frac{1}{\left[b,c\right]}=\frac{1}{bc}\le\frac{1}{15},\frac{1}{\left[c,a\right]}=\frac{1}{ca}\le\frac{1}{10}\)

Suy ra vế trái nhỏ hơn hoặc bằng :

\(\frac{1}{6}+\frac{1}{15}+\frac{1}{10}=\frac{1}{3}\)

5 tháng 11 2017

Ta có :

n2 + n + 1 = n . ( n + 1 ) + 1

Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên n . (  n + 1 ) + 1 là một số lẻ nên không chia hết cho 4

Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9. Do đó n . ( n + 1 ) + 1 không có tận cùng là 0

hoặc 5 . Vì vậy, n2 + n + 1 không chia hết cho 5

P/s đùng để ý đến câu trả lời của mình

5 tháng 3 2020

P/s: Bài toán này khá hay đó !!

Ta có : \(a\left(\frac{1}{b}+\frac{1}{c}\right)=b\left(\frac{1}{a}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{a^2c+a^2b}{abc}=\frac{b^2c+ab^2}{abc}=\frac{c^2b+c^2a}{abc}\)

Mà : \(a,b,c>0\)

\(\Rightarrow a^2c+a^2b=b^2c+ab^2=c^2b+c^2a\)

+) Xét : \(a^2c+a^2b=b^2c+ab^2\)

\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(ab+ca+cb\right)=0\)

\(\Leftrightarrow a-b=0\Leftrightarrow a=b\) (1)

( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )

+) Xét \(b^2c+ab^2=c^2b+c^2a\)

\(\Leftrightarrow bc\left(b-c\right)+a\left(b^2-c^2\right)=0\)

\(\Leftrightarrow\left(b-c\right)\left(bc+ab+ac\right)=0\)

\(\Leftrightarrow b-c=0\Leftrightarrow b=c\)(2)

( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )

Từ (1) và (2) \(\Rightarrow a=b=c\) (đpcm)

6 tháng 3 2020

 Thx nha !

5 tháng 8 2019

a, Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)

Thay:

\(\frac{ab}{cd}=\frac{b^2}{d^2}\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)

=> đpcm

9 tháng 12 2018

Bài 1:

Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c

<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1

Sai rồi em ơi 2 trường hợp cơ 

+, bằng -1

+, bằng 2

28 tháng 11 2016

Bài 2:

a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)

Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)

\(\Rightarrow4x+12=6x\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\)

Vậy x = 6

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)

\(=\frac{14-5}{8}=\frac{9}{8}\)

+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)

+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)

+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)

Vậy ...

c) \(5^x+5^{x+1}+5^{x+2}=3875\)

\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)

\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)

\(\Rightarrow5^x.31=3875\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

Vậy x = 3

28 tháng 11 2016

@@ good :D

13 tháng 9 2015

Hoàng Triều Minh Lê vậy con làm giúp pa đi 

 

ko cần nữa đâu,mình biết làm rồi