Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}\right)\)
\(< \frac{1}{2^2}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{1}{2^2}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{1}{2^2}\left(2-\frac{1}{7}\right)=\frac{1}{2}-\frac{1}{28}< \frac{1}{2}\)
Vậy \(A< \frac{1}{2}\).
M=1/10 + 1/15 + 1/21 +....+ 1/120
M=2/20 +2/30+2/42+....+2/240
M=2/4.5 + 2/5.6 + 2/6.7 +.....+ 2/15.16
M=2.(1/4.5 +......+ 1/15.16)
M=2.(1/4 -1/5 +1/5 - 1/6 +.....+ 1/15 - 1/16)
M=2.(1/4 - 1/16)
M=2.(4/16 - 1/16)
M=2. 3/16
M=6/16=3/8
Có 1/3 = 8/24 < 9/24 = 3/8 =>1/3<M
Có 1/2 = 4/8>3/8 =>1/2 >M
=> 1/3 < M < 1/2
1/2^2>1/2.3;1/3^2>1/3.4;......;1/9^2>1/9.10
suy ra S > 1/2.3+1/3.4+......+1/9.10
S> 1/2-1/3+1/3-1/4 +.....+1/9-1/10
S> 1/2-1/10=2/5
Vay 2/5 < S
Vậy còn S < \(\frac{8}{9}\)thì sao, bạn quên chưa chứng minh rồi
a) \(y+2\frac{3}{4}=5\frac{2}{3}\)
\(y+\frac{11}{4}=\frac{17}{3}\)
y = 35/12
b) \(y-1\frac{4}{5}=3\frac{2}{7}\)
y - 9/5 = 23/7
y = 178/35
\(a,y+2\frac{3}{4}=5\frac{2}{3}\)
\(\Rightarrow y+\frac{11}{4}=\frac{17}{3}\)
\(\Rightarrow y=\frac{17}{3}-\frac{11}{4}\)
\(\Rightarrow y=\frac{35}{12}\)
\(b,y-1\frac{4}{5}=3\frac{2}{7}\)
\(\Rightarrow y=3\frac{2}{7}-1\frac{4}{5}\)
\(\Rightarrow y=\frac{52}{35}\)
Ta có: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2011}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1006}\right)\)
\(=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\) (ĐPCM)
Cho mình lời giải đầy đủ nhé! * xin lỗi mấy bạn do lỗi phông*