\(\frac{12n+1}{30n+2}\)là phân số tối giản

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

Bạn ơi kết bạn đí rồi mình giải cho!

19 tháng 2 2017

ta có ucln của 12m+1, 30n+2 =d

=> (12n+1)chia hết cho d thì 5(12n+1) chia hết cho d hay 60n+5 chia hết cho d

30n+2 : d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d 

suy ra hiệu của 60n+5 và 60n+4 chia hết cho d hay 1 chia hết cho d => d là ước của 1

suy ra d bằng 1 

suy ra phân số trên là tối giản

Gọi d=(12n+1;30n+2)
=>12n+1 chia hết cho d;30n+2 chia hết cho d
=>5(12n+1)-2(30n+2) chia hết cho d
=>60n+5-60n-4 chia hết cho d
=>1 chia hết cho d mà d>0 =>  d=1
 =>12n+1;30n+2 là 2 số nguyên tố cùng nhau 
=> 12n+1/30n+2  là phân số tối giản.

13 tháng 2 2016

vao cau hoi tuong tu nha

ung ho nha moi nguoi

10 tháng 1 2016

Gọi d là UCLN (12n+1 và 30n+2)

=>12n+1 chia hết cho d và 30n+2 chia hết cho d

=>5.(12n+1)=60n+5 chia hết cho d và 2.(30n+2)=60n+4 chia hết cho d

=>(60n+5)-(60n+4)=60n+5-60n-4=1 chia hết cho d

=> d là 1 

=>12n+1/30n+2 tối giản

10 tháng 1 2016

Đặt ƯCLN(12n+1, 30n+2) = d

=> (12n+1)-(30n+2) chia hết cho d

=> 5.(12n+1)-2.(30n+2) chia hết cho d

=> 60n+5-60n-4 chia hết cho d

=> 1 chia hết cho d

=> d = 1 

=> ƯCLN (12n+1, 30n + 2) = 1

=> \(\frac{12n+1}{30n+2}\)tối giản (đpcm).

27 tháng 2 2017

Đặt ƯCLN(3n-2;4n-3)=d => 3n-2 chia hết cho d và 4n-3 chia hết cho d

=>4(3n-2) chia hết cho d và 3(4n-3) chia hết cho d 

=>12n-8 chia hết cho d và 12n-9 chia hết cho d 

=>(12n-8)-(12n-9) chia hết cho d 

=>1 chia hết cho d 

=>d=1

ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{3n-2}{4n-3}\) tối giản

27 tháng 2 2017

Đặt ƯCLN(4n+1;6n+1)=m => 4n+1 chia hết cho m và 6n+1 chia hết cho m

=>3(4n+1) chia hết cho m và 2(6n+1) chia hết cho m

=>12n+3 chia hết cho m và 12n+2 chia hết cho m 

=>(12n+3)-(12n+2) chia hết cho m

=>1 chia hết cho m

=>m=1

ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{4n+1}{6n+1}\) tối giản

8 tháng 8 2016

Gọi d = ƯCLN(12n + 1; 30n + 2) (d thuộc N*)

=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d

=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d

=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d

=> (60n + 5) - (60n + 4) chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(12n + 1; 30n + 2) = 1

=> phân số 12n + 1/30n + 2 là phân số tối giản

27 tháng 4 2017

cm 2 so do ngto cung nhau la dc

29 tháng 5 2018

Gọi d là ƯC(12n+1,30n+2). Ta có :

( 12n + 1 ) \vdots d => 5.( 12n + 1) \vdots d hay ( 30n + 5 ) \vdots d

( 30n + 2 ) \vdots d => 2 . ( 30n + 2 ) \vdots d hay ( 30n + 4 ) \vdots d

=> ( 30n + 5 ) - ( 30n + 4 ) = 1

               => d = 1

Vậy : \frac{12n+1}{30n+2}  là phân số tối giản 

29 tháng 5 2018

Ta có : \(\frac{12n+1}{30n+2}\)là phân số tối giản <=> ƯCLN(12n + 1; 30n + 2) \(\in\) {1; -1}

Gọi ƯCLN(12n + 1; 30n + 2) là d

=>   \(12n+1⋮d\)     =>  \(5\left(12n+1\right)⋮d\)            =>      \(60n+5⋮d\)

         \(30n+2⋮d\)          \(2\left(30n+2\right)⋮d\)                      \(60n+4⋮d\)

=> (60n + 5) - (60n + 4) = 1 \(⋮\)d => d \(\in\){1; -1}

Vậy \(\frac{12n+1}{30n+2}\)tối giản

21 tháng 6 2017

Gọi d là ƯCLN của tử và mẫu .

=>12n +1 chia hết cho d               60n+5 chia hết cho d

=> 30n +2chia hết cho d               60n +4 chia hết cho d

=> (60n+5) -(60n+4) chia hết cho d

=>1 chia hết cho d

=> d=1 => điều phải chứng minh (đpcm) 

10 tháng 6 2017

Gọi d là : ƯCLN của : 12n + 1 và 30n + 2

Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d 

<=> 5(12n + 1) chia hết cho d  , 2(30n + 2) chia hết cho d 

<=> 60n + 5 chia hết cho d  , 60n + 4 chia hết cho d 

=> (60n + 5) - (60n + 4) chia hết cho d 

=> 1 chia hết cho d 

=> d = 1 

Vậy ƯCLN của 12n + 1 và 30n + 2 = 1

Do đó phân số \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)

10 tháng 6 2017

Gọi d là : ƯCLN của : 12n + 1 và 30n + 2

Khi đó : 12n + 1 chia hết cho d, 30n + 2 chia hết cho d

<=> 5(12n + 1) chia hết cho d, 2(30n + 2) chia hết cho d

<=> 60n + 5 chia hết cho d, 60n + 4 chia hết cho d

=> (60n + 5) - (60n + 4) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy ƯCLN của 12n +1 và 30n +2 = 1

Do đó phân số : \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)  .

Chúc bạn học tốt !