Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{cos\left(a-b\right)}{sin\left(a+b\right)}=\frac{cosa.cosb+sina.sinb}{sina.cosb+cosa.sinb}=\frac{\frac{cosa.cosb}{sina.sinb}+1}{\frac{sina.cosb}{sina.sinb}+\frac{cosa.sinb}{sina.sinb}}=\frac{cota.cotb+1}{cota+cotb}\)
Bạn ghi đề ko đúng
\(sin\left(a+b\right)sin\left(a-b\right)=\frac{1}{2}\left[cos2b-cos2a\right]\)
\(=\frac{1}{2}\left[1-2sin^2b-1+2sin^2a\right]\)
\(=sin^2a-sin^2b\)
\(=1-cos^2a-1+cos^2b=cos^2b-cos^2a\)
Câu này bạn cũng ghi đề ko đúng
\(cos\left(a+b\right)cos\left(a-b\right)=\frac{1}{2}\left[cos2a+cos2b\right]\)
\(=\frac{1}{2}\left[2cos^2a-1+1-2sin^2b\right]=cos^2a-sin^2b\)
\(=1-sin^2a-1+cos^2b=cos^2b-sin^2a\)
Mẫn Li
Câu 4 nếu bạn ko đánh sai thì người ghi đề sai :D, tử số phải là sinb chứ ko phải sina (đã chứng minh bên trên)
Câu 2b sửa lại thì cm dễ thôi:
\(\frac{cos\left(a+b\right).cos\left(a-b\right)}{sin^2a.sin^2b}=\frac{\frac{1}{2}cos2a+\frac{1}{2}cos2b}{sin^2a.sin^2b}=\frac{1-sin^2a-sin^2b}{sin^2a.sin^2b}=\frac{1}{sin^2a.sin^2b}-\frac{1}{sin^2a}-\frac{1}{sin^2b}\)
\(=\left(1+cot^2a\right)\left(1+cot^2b\right)-\left(1+cot^2a\right)-\left(1+cot^2b\right)\)
\(=1+cot^2a+cot^2b+cot^2a.cot^2b-2-cot^2a-cot^2b\)
\(=cot^2a.cot^2b-1\)
(từ đầu bằng thứ nhất ra thứ 2 sử dụng ct nhân đôi \(cos2x=1-2sin^2x\))
Rất xin lỗi bạn!
Câu 2b do mình đánh sai dấu phải là \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a\times sin^2b}=cot^2a\times cot^2b-1\)
Câu 3 mình cũng đánh sai luôn:
\(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times sin\frac{B}{2}\)
Còn câu 4 thì mình ko có đánh sai! Thành thật xin lỗi bạn! Mình sẽ khắc phục sự cố này!
\(A=\frac{1}{2}-\frac{1}{2}cos\left(2a-2b\right)+\frac{1}{2}-\frac{1}{2}cos2b+2sin\left(a-b\right)sinb.cosa\)
\(=1-\frac{1}{2}\left[cos\left(2a-2b\right)+cos2b\right]+2sin\left(a-b\right)sinb.cosa\)
\(=1-cosa.cos\left(a-2b\right)+2sin\left(a-b\right).sinb.cosa\)
\(=1-cosa\left[cos\left(a-2b\right)-2sin\left(a-b\right)sinb\right]\)
\(=1-cosa\left[cos\left(a-2b\right)+cosa-cos\left(a-2b\right)\right]\)
\(=1-cosa^2=sin^2a\)
Hoàn toàn tương tự:
\(B=1+cos\left(2a+b\right).cosb-2cosa.cosb.cos\left(a+b\right)\)
\(=1+cosb\left[cos\left(2a+b\right)-2cosa.cos\left(a+b\right)\right]\)
\(=1+cosb\left[cos\left(2a+b\right)-cos\left(2a+b\right)-cosb\right]\)
\(=1-cos^2b=sin^2b\)
Áp dụng công thức biến tích thành tổng:
\(cos\left(a+b\right).cos\left(a-b\right)=\dfrac{1}{2}\left(cos2a+cos2b\right)\)
\(=\dfrac{1}{2}\left(2cos^2a-1+1-2sin^2b\right)=\dfrac{1}{2}\left(2cos^2a-2sin^2b\right)\)
\(=cos^2a-sin^2b\)
\(cos\left(\dfrac{\pi}{4}+a\right).cos\left(\dfrac{\pi}{4}-a\right)+\dfrac{1}{2}sin^2a=\dfrac{1}{2}\left(cos\dfrac{\pi}{2}+cos2a\right)+\dfrac{1}{2}sin^2a\)
\(=\dfrac{1}{2}cos2a+\dfrac{1}{2}sin^2a=\dfrac{1}{2}\left(cos^2a-sin^2a\right)+\dfrac{1}{2}sin^2a\)
\(=\dfrac{1}{2}cos^2a\)
\(\frac{sinA}{cosA}+\frac{sinB}{cosB}=\frac{2cos\frac{C}{2}}{sin\frac{C}{2}}\Leftrightarrow\frac{sinA.cosB+cosA.sinB}{cosA.cosB}=\frac{2sin\frac{C}{2}.cos\frac{C}{2}}{sin^2\frac{C}{2}}\)
\(\Leftrightarrow\frac{sin\left(A+B\right)}{cosA.cosB}=\frac{2sinC}{1-cosC}\Leftrightarrow\frac{sinC}{cosA.cosB}=\frac{2sinC}{1-cosC}\)
\(\Leftrightarrow1-cosC=2cosA.cosB=cos\left(A+B\right)+cos\left(A-B\right)\)
\(\Leftrightarrow1-cosC=-cosC+cos\left(A-B\right)\)
\(\Leftrightarrow cos\left(A-B\right)=1\Rightarrow A-B=0\Rightarrow A=B\)
\(\Rightarrow\) Tam giác ABC cân tại C
\(\frac{cos^2A+cos^2B}{sin^2A+sin^2B}=\frac{1}{2}\left(cot^2A+cot^2B\right)\)
\(\Leftrightarrow2cos^2A+2cos^2B=\left(sin^2A+sin^2B\right)\left(cot^2A+cot^2B\right)\)
\(\Leftrightarrow2cos^2A+2cos^2B=cos^2A+cos^2B+sin^2A.cot^2B+sin^2B.cot^2A\)
\(\Leftrightarrow cos^2A+cos^2B=\frac{sin^2A.cos^2B}{sin^2B}+\frac{sin^2B.cos^2A}{sin^2A}\)
\(\Leftrightarrow cos^2A\left(\frac{sin^2B}{sin^2A}-1\right)=cos^2B\left(1-\frac{sin^2A}{sin^2B}\right)\)
\(\Leftrightarrow\frac{cos^2A\left(sin^2B-sin^2A\right)}{sin^2A}=\frac{cos^2B\left(sin^2B-sin^2A\right)}{sin^2B}\)
\(\Leftrightarrow cot^2A\left(sin^2B-sin^2A\right)=cot^2B\left(sin^2B-sin^2A\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sin^2B=sin^2A\\cot^2A=cot^2B\end{matrix}\right.\) \(\Rightarrow A=B\)
\(sin^4x=\left(sin^2x\right)^2=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x\)
\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}\left(\frac{1}{2}+\frac{1}{2}cos4x\right)=\frac{3}{8}-\frac{1}{2}cos2x+\frac{1}{8}cos4x\)
\(\frac{cos\left(a+b\right)cos\left(a-b\right)}{cos^2a.cos^2b}=\frac{\left(cosa.cosb-sina.sinb\right)\left(cosa.cosb+sina.sinb\right)}{cos^2a.cos^2b}\)
\(=\frac{cos^2a.cos^2b-sin^2a.sin^2b}{cos^2a.cos^2b}=1-\frac{sin^2a.sin^2b}{cos^2a.cos^2b}=1-tan^2a.tan^2b\)