K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

1110-1=(11-1)(119+118+...+11)=10(119+118+...+11)⋮10

Vì 1110-1⋮10=>11x-1⋮10<=>(119+118+...+11)⋮10

=>10(119+118+...+11)⋮100

=>1110-1⋮100

30 tháng 7 2017

\(A=7^1+7^2+7^3+7^4+...+7^{4k}\)

\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

\(=7.\left(1+7+7^2+7^3\right)+...+7^{4k-3}.\left(1+7+7^2+7^3\right)\)

\(=7.\left(1+7+49+343\right)+...+7^{4k-3}.\left(1+7+49+343\right)\)

\(=7.400+...+7^{4k-3}.400=400.\left(7+...+7^{4k-3}\right)\)

\(=100.\left[4.\left(7+...+7^{4k-3}\right)\right]⋮100\)

=> đpcm

26 tháng 6 2018

Ta có : \(11^{10}⋮1\left(mod100\right)\)

\(\Rightarrow\left(11^{10}\right)^{10}⋮1\left(mod100\right)\)

\(\Rightarrow11^{100}⋮1\left(mod100\right)\)

\(1⋮1\left(mod100\right)\)

\(\Rightarrow11^{100}-1⋮0\left(mod100\right)\)

Hay \(11^{100}-1⋮100\)( dpcm )

19 tháng 3 2017

1110-1=(1+10)10-1=(1+c11010+c210102+...+c910109+1010)-1

=102+c210102+...+c910109+1010

tổng sau cùng chia hết cho 100 => 1110-1chia hết cho 100

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

27 tháng 9 2019

Nếu n chia hết cho 13 thì dư 7 có dạng \(13k+7\left(k\inℕ\right)\)

Khi đó : 

\(n^2-10=\left(13k+7\right)^2-10=13^2k^2+2.13k.7+7^2-10\)

\(=13^2k^2+13k.14+39=13.\left(13k^2.14k+3\right)⋮13\)

Vậy \(n^2-10⋮13\left(đpcm\right)\)

Chúc bạn học tốt !!!