Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3^n+2-2^n+2+3^n-2^n
=3^n+2+3^n-(2^n+2+2^n)
=3^n(3^2+1)-2^n(2^2+1)
=3^n.10-2^n.5=3^n.10-2^n-1.10=10(3^n-2^n-1) chia hết cho 10(đpcm)
Ta có:
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
Vì \(\left\{{}\begin{matrix}3^n.10⋮10\\2^n.5⋮10\end{matrix}\right.\)
Nên \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
\(3^{n+2}-2 ^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(2^n-2^{n-1}\right).10\) chia hết cho 10
Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
Suy ra S chia hết cho 10.
\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-2^{n+2}-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(3^n-2^{n-1}\right).10\)
luôn chia hết cho 10 (đpcm)
Với n = 1, ta có
1^3 + 9.1^2 + 2.1 = 12 chia hết cho 6
Giả sử khẳng định đúng với n = k, tức là:
k^3 + 9k^2 + 2k chia hết 6
Đặt k^3 + 9k^2 + 2k = 6Q
Ta sẽ CM khẳng định đúng với n = k + 1, ta có:
(k + 1)^3 + 9(k + 1)^2 + 2(k + 1)
= k^3 + 3k^2 + 3k + 1 + 9k^2 + 18k + 9 + 2k + 1
= (k^3 + 9k^2 + 2k) + 3k^2 + 18k + 3k + 12
= 6Q + (3k^2 + 21k) + 12
= 6Q + 3k(k + 7) + 12
= 6Q + 3k[(k + 1) + 6] + 12
= 6Q + 3k(k + 1) + 6.3k + 12
Vì k và k + 1 là 2 số nguyên liên tiếp nên:
k(k + 1) chia hết cho 2
=> 3k(k + 1) chia hết cho 3.2 = 6
=> 6Q + 3k(k + 1) + 6.3k + 12 chia hết cho 6
Vậy theo nguyên lý quy nạp ta chứng minh được
n^3 + 9n^2 + 2n chia hết 3
\(3^{n+2}-2^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(3^n-2^{n-1}\right).10\) chia hết cho 10