K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

ns chung méo có ai gáy, sủa cả :3

Ta có:

3^2n+1 +  2^n+2

=(9^n).3  +( 2^n) .4

=(9^n).3 + 3(2^n) + 7(2^n)

=3(9^n-2^n) + 7(2^n) ( các bước này khá giống Phạm Bá Hoàng nhưng ko nghĩa là tớ copy bài cậu ý =))

Mà: 9^n - 2^n chia hết cho 7 ( vì 2 số này cùng chia 7 dư 2 nên mũ mấy lên cx cùng số dư khi chia cho 7)

Cụ thể hơn để mấy bạn khỏi cãi: tớ viết dấu = thay cho 3 gạch ngang nhé :3

Vì: 2=2(mod 7);9=2(mod 7)

=> 2^n=2^n(mod 7); 9^n=2^n(mod 7)

=> 3(9^n-2^n) chia hết cho 7 và 7(2^n) chia hết cho 7

nên 3^2n+1 +  2^n+2 chia hết cho 7 (đpcm)

có lẽ ko sai nx đâu nhỉ nếu sai ib vs =))

19 tháng 2 2019

Bài này cx easy thôi.Dùng phép quy nạp là ra:

\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)

+)Với n = 0 thì \(9^n.3+2^n.4=3+4=7\Rightarrow\)mệnh đề đúng với n = 0. (1)

Giả sử mệnh đề đúng với n = k.Tức là \(9^k.3+2^k.4⋮7\) (2)

Ta c/m nó đúng với n = k + 1.Tức là cần c/m \(9^{k+1}.3+2^{k+1}.4⋮7\) (3)

\(\Leftrightarrow9^k.27+2^k.8⋮7\).Thật vậy:

\(9^k.27+2^k.8=9\left(9^k.3+2^k.4\right)-2^k.28\)

Do \(9\left(9^k.3+2^k.4\right)⋮7;2^k.28⋮7\)

Suy ra \(9\left(9^k.3+2^k.4\right)-2^k.28⋮7\)

Suy ra (3) đúng .

Vậy theo nguyên lí qui nạp,ta có đpcm.

2 tháng 3 2017

Ta co

\(3^{n+2}-2^{n+4}+3^n+2^n=3^n.3^2-2^n.2^4+3^n+2^n=3^n.\left(3^2+1\right)-2^n.\left(2^4-1\right)=3^n.10-2^n.15=5.\left(3^n.2-2^n.3\right)=5.2.3.\left(3^{n-1}-2^{n-1}\right)=30.\left(3^{n-1}-2^{n-1}\right)\)

Vì 30 chia hêt cho 30 nên 30.(\(3^{n-1}-2^{n-1}\)) chia hêt cho 30

Hay \(3^{n+2}-2^{n+4}+3^n+2^n\) chia hêt cho 30

2 tháng 3 2017

... = 3n ( 9 +1) - 2n (16 - 1) = 3n . 10 - 2n . 15

có 3n . 10 luôn chia hết cho 30 (vì 3n chia hết cho hết cho 3, 10 chia hết 10, 3 và 10 nguyên tố cùng nhau) (1)

2n . 15 chia hết cho 10 (tận cùng = 0), 15 chia hết cho 3

=> 2n . 15 chia hết 30 (2)

1 và 2 => đpcm

4 tháng 11 2016

a ) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right).4\)

\(=8\left(n+1\right)\) chia hết cho 8

\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)

b ) \(\left(2n+1\right)^2-1\)

\(=\left(2n+1-1\right)\left(2n+1+1\right)\)

\(=2n.\left(2n+2\right)\)

\(=2.2n\left(n+1\right)\)

\(=4n\left(n+1\right)\)

Ta có : \(n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)

\(\Rightarrow4n\left(n+1\right)⋮8\).

c ) Gọi 2 số lẻ liên tiếp là \(2n+1\)\(2n-1\)

Ta có : \(\left(2n+1\right)^2-\left(2n-1\right)^2\)

\(=\left(2n+1+2n-1\right)\left(2n+1-2n+1\right)\)

\(=4n.2\)

\(=8n\) chia hết cho 8

Vậy .........

26 tháng 2 2016

Có:\(\left(3^{n+2}-2^{n+4}+3^n+2^n\right)=\left(3^n.3^2-2^n.2^{^4}+3^n+2^n\right)=3^n\left(3^2+1\right)-2^n.\left(2^4-1\right)=3^n.10-2^n.15\)Vì 30 chia hết cho 10 nên \(3^n.10\) cũng chia hết cho 10      

Vì 30 chia hết cho 15 nên \(2^n.15\) cũng chia hết cho 15      

Từ 2 điều nêu trên ta suy ra:  \(\left(3^n.10-2^n.30\right)\)  chia hết cho 30

Vậy: \(\left(3^{n+2}-2^{n+4}+3^n+2^n\right)\)chia hết cho 30 (ĐPCM)

8 tháng 1 2018

a) 9.10n + 18 = 9(10n + 2) \(⋮\) 9

Mặt khác: 9(10n + 2) = 3.3(10n + 2)\(⋮\) 3

=> 9.10n + 18 \(⋮\) 9.3

=> 9.10n + 18 \(⋮\) 27.

b) 92n + 14 = 81n + 14.

Vì 81n có chữ số tận cùng là 1 nên 81n + 14 có chữ số tận cùng là 5.

=> 81n + 14 \(⋮\) 5

=> 92n + 14 \(⋮\) 5