Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(x^2+x+1\)
\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
2: \(2x^2+2x+1\)
\(=2\left(x^2+x+\dfrac{1}{2}\right)\)
\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\forall x\)
3:
\(x^2+y^2=\left(x-y\right)^2+2xy=7^2+2\cdot60=169\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2\cdot\left(xy\right)^2\)
\(=169^2-2\cdot60^2=21361\)
\(2x^2+2x+1=x^2+x^2+2x+1=x^2+\left(x+1\right)^2\)
Nếu \(x^2\ge0\) thì \(\left(x+1\right)^2>0\)
Ngược lại \(\left(x+1\right)^2\ge0\) thì \(x^2>0\)
=> x2 + (x + 1)2 > 0 \(\forall x\)
hay \(2x^2+2x+1>0\forall x\)
--> đpcm
\(=x^2+x^2+2x+1\)
\(=x^2+\left(x+1\right)^2\)
Ta có: (x+1)2 \(\ge\) 0 với mọi x
\(\Rightarrow\) x2 + (x+1)2 > 0 với mọi x
Vậy bài toán trên luôn dương
Dễ hiểu mà bạn mấy cái dạng này mk gặp nhiều lần rồi
Ta có:\(\left(2x+1\right)\left(x-1\right)-2x^2+mx+m-2=0\)
Nhân ra thôi mà bạn:\(2x^2-2x+x-1-2x^2+mx+m-2=0\)
\(\Rightarrow-x-3+mx+m=0\)(Sao ko giống cái ở trên vậy hay là bạn giải sai kiểm tra lại đi rồi hãy nói)
bạn có cần phải kiêu căng vậy không? là sách giải bạn nhé :)))
Em làm vậy chưa đúng nhé. Ta cần làm như sau:
\(\frac{x-5}{2x+2}-1>0\Leftrightarrow\frac{x-5-\left(2x+2\right)}{2x+2}>0\)
\(\Leftrightarrow\frac{-x-7}{2x+2}>0\)
Tới đây có thể lập bảng xét dấu hoặc xét trường hợp. Ở đây cô xét trường hợp :
Với \(x\le-7:-x-7\ge0;2x+2< 0\Rightarrow\frac{-x-7}{2x+2}\le0\left(l\right)\)
Với \(-7< x< -1:-x-7< 0;2x+2< 0\Rightarrow\frac{-x-7}{2x+2}>0\left(n\right)\)
Với \(x>-1:-x-7< 0;2x+2>0\Rightarrow\frac{-x-7}{2x+2}< 0\left(l\right)\)
Vậy \(-7< x< -1\)
1) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow 4x^2 + 14x - 10x - 35=4x^2-25\)
\(\Leftrightarrow4x^2-4x^2+14x-10x=35-25\)
\(\Leftrightarrow4x=10\)
\(\Leftrightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
2) \(x^2-4x+5\)
\(=-(4x-x^2-5 )\)
\(= -[-(x^2-4x)-5 ]\)
\(=-[ -(x^2-2x.2+4-4)-5 ]\)
\(= -[-(x-2)^2+4-5 ]\)
\(= -[-(x-2)^2-1 ]\)
Vì \(-(x-2)^2 ≤0\)\(\forall x\) \(\Rightarrow\) \(-(x-2)^2-1<0\) \(\forall x\)
\(\Rightarrow\)\(-[-(x-2)^2-1 ]>0\)\(\forall x\)
\(\Rightarrow x^2-4x+5>0\)\(\forall x\)
Bài làm:
Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x,y,z\right)\)
x2 + 4y2 + z2 - 2x - 6z + 8y + 15
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x,y,z ( đpcm )
làm tắt ko hiểu thì hỏi
a) \(=x^2+2.xy.\frac{1}{2}+\frac{1}{4}y^2-\frac{1}{4}y^2+y^2+1\)
\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)
b) \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6x+9\right)+1\)
\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)
Đề ko sai đâu bạn đợi mình làm cho
Đặt \(A=2x^4+2x+1\)
\(=2x^4+4x^3+2x^2-2x^2-4x^3+2x+1\)
\(=\left(2x^4-4x^3+2x^2\right)+\left(4x^3-2x^2+2x\right)+1\)
\(=2x^2\left(x^2-2x+1\right)+2x\left(2x^2-x+1\right)+1\)
\(=2x^2\left(x-1\right)^2+2x\left[\left(x\sqrt{2}\right)^2-2.x\sqrt{2}.\frac{1}{2\sqrt{2}}+\frac{1}{8}-\frac{1}{8}+1\right]+1\)
\(=2x^2\left(x-1\right)^2+2x\left[\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}\right]+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0;\forall x\\\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2\ge0;\forall x\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x^2\left(x-1\right)^2\ge0;\forall x\\\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}>0;\forall x\end{cases}}\)
\(\Rightarrow2x^2\left(x-1\right)^2+2x\left[\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}\right]+1>0;\forall x\)
Hay \(A>0;\forall x\)