K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

Ta có : 2n -1 ; 2n và 2n + 1 là 3 số tự nhiên liên tiếp.

Trong 3 số tự nhiên liên tiếp chắc chắn có 1 số  \(⋮\)3

Mà 2n - 1 là số nguyên tố => 2n + 1 không chia hết cho 3

và 2n ko chia hết cho 3 ( vì 2n là bội của 2 ko chia hết cho 3 và n>2)

=> 2n +1 chia hết cho\(⋮\)3

=> 2n +1 là hợp số 

   => Điều cần chứng minh

16 tháng 1 2019

bn trong doi tuyen ha?

15 tháng 8 2018

1) trả lời

4253 + 1422 =5775

mà 5775 chia hết cho 3;5

=>nó là hợp số

15 tháng 8 2018

mình xin lỗi ấn nhầm bây giờ mk giải tiếp

giải

2) để 5x + 7 là số nguyên tố

=>5x+7 chia hết cho 5x+7 và 1

=>x thuộc (2;6)

3) trả lời 

n.(n+1) là hợp số bởi vì 

nếu n+1 là số lẻ=>n là số chẵn mà chẵn nhân với lẻ lại được số chẵn chia hết cho 2

nếu n+1 là số chẵn =>n là số lẻ mà lẻ nhân chẵn sẽ được số chẵn chia hết cho 2

mình xin lỗi mình chỉ làm dc thế thôi nhé, nếu bạn ko k thi thôi, ko sao

chào bạn

18 tháng 3 2018

Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...

18 tháng 3 2018

Bài 1 : 

Ta có : 

\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)

Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)

Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n 

Chúc bạn học tốt ~ 

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:

Nếu $n$ là số chẵn. Đặt $n=2k$ ($k$ tự nhiên)

$\Rightarrow 2^n-1=2^{2k}-1=4^k-1=(3+1)^k-1=\text{BS3}+1-1=\text{BS3}$ chia hết cho $3$

Mà $2^n-1>3$ với mọi $n>2$ nên không thể là số nguyên tố.

Do đó $n$ là số lẻ. Đặt $n=2k+1$ với $k$ tự nhiên.

Khi đó: $2^n+1=2^{2k+1}+1=2.4^k+1=2(3+1)^k+1=2(\text{BS3}+1)+1=2\text{BS3}+3=\text{BS3}$

Mà $2^n+1>3$ nên $2^n+1$ là hợp số (đpcm)

Ký hiệu: $\text{BS3}$ là bội số của $3$

2 tháng 1 2016

2n + 1 là số nguyên tố

Nếu 2n chia 3 dư 2 < = > 2n + 1 chia hết cho 3 (loại)

Mà 2n không chia hết cho 3

< = > 2n chia 3 dư 1

< = > 2n - 1 chia hết cho 3

< = > 2n - 1 là hợp số 

 

2 tháng 1 2016

......./ll............ll

12 tháng 3 2018

Bạn xem lời giải chi tiết ở đường link dưới nhé:

Câu hỏi của Bùi Nguyễn Việt Anh - Toán lớp 6 - Học toán với OnlineMath

30 tháng 1 2020

a, Số dư luôn <3