Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý: \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\)
\(A=1^3+2^3+...+100^3\)
\(=\left(1+2+....+100\right)^2\)
\(\Rightarrow\frac{A}{B}=\frac{\left(1+2+...+100\right)^2}{1+2+...+100}=1+2+...+100\)
\(=\frac{100\cdot\left(100+1\right)}{2}=\frac{100\cdot101}{2}=5050\)
Vậy A chia hết B
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
Bài chỉ chứng minh vế phải chia hết vế trái chứ k tìm n hay a nhé bạn
Nguyễn Ngọc Phương: Mình đâu có tìm $n,a$ đâu hả bạn? Mình đang chỉ ra TH sai mà???
Chả hạn, chứng minh $n(n+1)(n^2+1)\vdots 5$ thì có nghĩa mọi số tự nhiên/ nguyên $n$ đều phải thỏa mãn. Nhưng chỉ cần có 1 TH $n$ thay vào không đúng nghĩa là đề không đúng rồi.
Đặt A=13+23+...+1003; B=1+2+...+100
Ta có :
B=101.50
gt⇒A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101
gt⇒A=(993+13)+(983+23)+...+(493+513)+503+1003=A⋮50
⇒A⋮50.101
⇒A⋮B
Chỉ cần để ý: \(1^3+2^3+3^3+...+100^3=\left(1+2+3+...+100\right)^2\)