\(222^{333}+333^{222}\) chia hết cho 13

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

Ta có :

222333 + 333222 = 111333 . 2333 + 111222 . 3222

= 111222 . [ ( 111 . 23 )111 + ( 32 )111 ]

= 111222 . ( 888111 + 9111 )

Vì 888111 + 9111 = ( 888 + 9 ) . ( 888110  - 888109 . 9 + ... - 888 . 9109 + 9110 )

= 13 . 69 . ( 888110 - 888109 . 9 + ... - 888 . 9109 + 9110 ) \(⋮\)13

Vậy 222333 + 333222 \(⋮\)13

20 tháng 12 2017

222^333 - 1 = (222 - 1).p = 13*17*p 
333^222 + 1 = (333²)^111 + 1 = 110889^111 + 1 = (110889 + 1).q = 13*8530*q 
222^333 + 333^222 = 222^333 - 1 + 333^222 + 1 = 13(17p + 8530q) chia hết cho 13 

30 tháng 6 2017

\(222^{333}+333^{222}=\left(2^3\right)^{111}+\left(3^2\right)^{111}=8^{111}+9^{111}=\left(8+9\right)\cdot Q=17\cdot Q⋮17\)

Có thể mình làm sai hoặc bạn nhầm đề rồi nha!

30 tháng 6 2017

cảm ơn bạn nhiều mình không chắc là mình viết đứng ko nữa dù sao cũng cảm ơn bạn vì đã giúp mình

19 tháng 6 2021

\(111...1222...2=111...1.10^n+2x111...1\) (Mỗi số hạng có n chữ số 1)

Đặt \(111...1=a\)  (n chữ số 1) \(\Rightarrow a=9a+1\)

\(\Rightarrow111...1222...2=111...1\left(10^n+2\right)=a\left(9a+1+2\right)=3a\left(3a+1\right)\)(dpcm)

19 tháng 6 2021

Xin lỗi

Đặt \(111...1=a\Rightarrow10^n=9a+1\)

19 tháng 7 2016

mọi người giúp mk vs!!!!!

27 tháng 9 2019

Nếu n chia hết cho 13 thì dư 7 có dạng \(13k+7\left(k\inℕ\right)\)

Khi đó : 

\(n^2-10=\left(13k+7\right)^2-10=13^2k^2+2.13k.7+7^2-10\)

\(=13^2k^2+13k.14+39=13.\left(13k^2.14k+3\right)⋮13\)

Vậy \(n^2-10⋮13\left(đpcm\right)\)

Chúc bạn học tốt !!!