K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

a)ta có S=5+52+53+...+52004 =(5+52)+(53+54)+...+(52003+52004)

S=5.(1+5)+53.(1+5)+...+52003.(1+5)

S=5.6+53.6+..+52003+6

S=6.(5+53+...+52003)

Vì 6 chia hết cho 6

=> S chia hết cho 6

b)S=5.(1+5+52)+...+598.(1+5+52)

S= 5.31+...+598.31

S=31.(5+...+598)

vì 31 chia hết cho 31

=> S chia hết cho 31

c)S=5.(1+5+52+53)+...+597.(1+5+52+53)

S=5.156+...+597.156

S= 156.(5+...+597)

vì 156 chia hết cho 156

=> S chia hết cho 156

21 tháng 7 2017

\(S=5+5^2+5^3+...+5^{2004}\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)

\(=\left(1+5\right)\left(5+5^3+...+5^{2003}\right)\)

\(=6\left(5+5^3+...+5^{2003}\right)\)

Vậy S chia hết cho 6.

\(S=5\left(1+5+5^2\right)+...+5^{2002}\left(1+5+5^2\right)\)

\(=\left(1+5+5^2\right)\left(5+...+5^{2002}\right)\)

\(=31\left(5+...+5^{2002}\right)\)

Vậy S chia hết cho 31.

\(S=5\left(1+5+5^2+5^3\right)+...+5^{2001}\left(1+5+5^2+5^3\right)\)

\(=\left(1+5+5^2+5^3\right)\left(5+...+5^{2001}\right)\)

\(=156\left(5+...+5^{2001}\right)\)

Vậy S chia hết cho 156.

23 tháng 4 2016

Bạn xem lời giải của mình nhé:

Giải:

a) Có: 5 + 52 + 53 + 54 + 55 + 56 = 5(1 + 53) + 52(1 + 53) + 53(1 + 53
= 5. 126 + 52.126 + 53.126
=> 5 + 52 + 53 + 54 + 55 + 56 chia hết cho 126.

S = (5 + 52 + 53 + 54 + 55 + 56) + 56(5 + 52 + 53 + 54 + 55 + 56) + … + 51998(5 + 52 + 53 + 54 + 55 + 56).
Tổng trên có (2004: 6 =) 334 số hạng chia hết cho 126 nên nó chia hết cho 126.

b) Có: 5 + 52 + 53 + 54 = 5+ 53 + 5(5 + 53) = 130 + 5. 130.
=> 5 + 52 + 53 + 54 chia hết cho 130

S = 5 + 52 + 53 + 54 + 54(5 + 52 + 53 + 54 ) + … + 52000(5 + 52 + 53 + 54 )
Tổng trên có (2004: 4 =) 501 số hạng chia hết cho 130 nên nó chia hết cho 130.

Có S chia hết cho 130 nên chia hết cho 65.

Chúc bạn học tốt!hihi

23 tháng 4 2016

S=5+5^2+5^3+...+5^2004

S=(5+5^4)+(5^2+5^5)+...+(5^2001+5^2004)(có 1007 nhóm)

S=5*(1+5^3)+5^2*(1+5^3)+...+5^2001*(1+5^3)

S=5*126+5^2*126+...+5^2001*126

S=126*(5+5^2+...+5^2001) luôn luôn chia hết cho 126

S=(5+5^3)+(5^2+5^4)+...+(5^2002+5^2004)

S=130+5*(5+5^3)+...+5^2001*(5+5^3)

S=130+5*130+...+5^2001*130

S=130*(1+5+...+5^2001)

S=65*2*(1+5+...+5^2001) luôn luôn chia hết cho 65

AH
Akai Haruma
Giáo viên
16 tháng 12 2016

Lời giải:

Ta có $3^m+5^n\equiv 3^m+1\equiv 0\pmod 4$ nên $3^m\equiv (-1)^m\equiv -1\pmod 4$ nên $m$ lẻ

Đặt $m=2k+1$ ( $k\in\mathbb{N}$) thì $3^m=3^{2k+1}\equiv 3\pmod 8$

$\Rightarrow 5^n\equiv 5\pmod 8$. Xét tính chẵn, lẻ ( đặt $n=2t,2t+1$) suy ra $n$ lẻ

Do đó $\Rightarrow 3^n+5^m\equiv (-5)^n+(-3)^m=-(5^n+3^m)\equiv 0\pmod 8$

Ta có đpcm

27 tháng 12 2015

Bài nào không hiểu thì mình giải cho 

27 tháng 12 2015

dễ 

17 tháng 1 2016

1.

Chưa phân loại

2.

Chưa phân loại

3.

ko bt

4.

Chưa phân loại

5.

ko bt

18 tháng 1 2016

Thiên Thảo copy nek cho copy vs

1. Chưa phân loại

2. Chưa phân loại

4. Chưa phân loại

21 tháng 4 2016

B = 62n +1 + 5n+5 = 62n . 6 + 5n . 55

                              = 36n .6 + 5n . 3125

                              = 36n .(31 - 25) + 5n . (3100 + 25)

                              = 36n . 31 - 36n . 25 + 5n . 3100 + 5n . 25 

Ta thấy:  36n . 31 chia hết cho 31

                5n . 3100 chia hết cho 31

=> - 36n . 25 + 5n .25 chia hết cho 31

hay 25 .( - 36n + 5n) chia hết cho 31

Ta có:

-36n +5n = -5n +( -31n) + 5n

                = -31n chia hết cho 31

=> 25 .( - 36n + 5n) chia hết cho 31

hay 

36n . 31 - 36n . 25 + 5n . 3100 + 5n . 25 chia hết cho 31

Vậy B = 62n +1 + 5n+5  chia hết cho 31

 

26 tháng 3 2016

chia hết cho 33 nha

 

26 tháng 3 2016

\(S=16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.\left(32+1\right)=2^{15}.33\text{ chia hết cho 33}\)

Vậy S chia hết cho 33 (Đpcm).

17 tháng 2 2016

Bài 2:

a) Ta có:

\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)

Vậy \(S\) \(\text{⋮}\) \(-20\)

17 tháng 2 2016

Bài 1:

Ta có:

\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)

\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)

\(=\left(-12\right).m^2.3.n^3\)

\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)

Xét: \(m^2\ge0\) với V m

3>0 nên \(m^2.3\ge0\) với V m

Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)

-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)

Vậy với n<0 và mọi m thì \(A\ge0\)