Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
Chứng minh rằng:
\(2^{10}+2^{11}+2^{12}\)
\(=2^{10}\left(1+2+2^2\right)\)
\(=2^{10}.7\) \(⋮\) 7
Vậy \(2^{10}+2^{11}+2^{12}\) chia hết cho 7
Chứng minh rằng:
\(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\)
\(=3^n.3^3+3^n.3^2+2^n.2^3+2^n.2^2\)
\(=3^n\left(3^3+3^2\right)+2^n\left(2^3+2^2\right)\)
\(=36.3^n+12.3^n\)
\(=6\left(6.3^n+2.3^n\right)\) \(⋮\) 6 với mọi n \(\in\) N
Vậy \(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\) chia hết cho 6 với mọi n \(\in\) N
S = 2 + 2 2 + 2 3 + ... + 2 99 + 2 100
S = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) + ... + ( 2 96 + 2 97 + 2 98 + 2 99 + 2 100 )
S = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) + ... + ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) . 2 95
S = 62 + ... + 62 . 2 96
S = 62 ( 1 + ... + 2 96 )
Vì 62 chia hết cho 31
=> 62 ( 1 + ... + 2 96 ) chia hết cho 31
=> S chia hết cho 31
Sbằng(2+2^5)+(2^9+2^13)+.........+(2^41+2^45)
Sbằng2.(1+2^4)+2^9.(1+2^4)+......+2^41.(1+2^4)
Sbằng2.17+2^9.17+...........+2^41.17
S bằng(2+2^9+......+2^41).17 chia hết 17
^là mũ bạn nhé
=2.(2^4+1)+2^9.(2^4+1)...............+2^41.(2^4+1)
=2.17+2^9.17+..............+2^41.17
=17.(2+2^9+...........+2^41) chia hết cho 17 (đpcm)