K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

Đặt A là biểu thức trên

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{31}{15^2.16^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{31}{225.256}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{225}-\frac{1}{256}\)

\(=1-\frac{1}{256}=\frac{255}{256}< 1\)

Vậy...

26 tháng 9 2017

Ta có : \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{31}{15^2.16^2}\)

= \(\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+...+\dfrac{16^2-15^2}{15^2.16^2}\)

= \(\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{15^2}-\dfrac{1}{16^2}\)

= \(1-\dfrac{1}{16^2}< 1\)

5 tháng 12 2015

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+..+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\left(đpcm\right)\)

nhớ tick nhé

1 tháng 7 2016

Mình gợi ý cho thôi, cậu tự làm nha

VD: \(\frac{3}{1^2\cdot2^2}=\frac{3}{1\cdot4}=\frac{1}{1}-\frac{1}{4}\)

Các phân số còn lại thì tương tự, xong rồi thì rút gọn.

Thế là ta có đpcm!!!!

11 tháng 11 2016

=\(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+.....+\frac{1}{9^2}-\frac{1}{10^2}\)

=\(1-\frac{1}{10^2}\)

Mà \(1-\frac{1}{10^2}\)\(< 1\)

=>Tổng đó bé hơn \(1\)

3 tháng 8 2016

Đặt BT là A

\(\Rightarrow A=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+....+\frac{10^2-9^2}{9^2.10^2}\)

\(A=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{2^2}+....+\frac{1}{9^2}-\frac{1}{10^2}\)

\(A=1-\frac{1}{10^2}< 1\)

=> A<1(đpcm)