Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh rằng: 165 + 215 chia hết cho 33
165 + 215
= (24)5 + 215
= 220 + 215
= 215. 25 + 215
= 215( 25 + 1 )
= 215. 33 chia hết cho 33
Vậy 165 + 215 chia hết cho 33
b) Ta có : 1028 + 8 = 100...008 ( 27 chữ số 0 )
Xét 008 chia hết cho 8 ⇒ 1028 + 8 chia hết cho 8. (1)
Xét 1 + 27.0 + 8 = 9 chia hết cho 9 ⇒ 1028 + 8 chia hết cho 9 (2)
Mà U7CLN (8,9) = 1 (3)
Từ (1) ; (2) và (3) ⇒ 1028 + 8 chia hết cho 72 (do 8.9=72)
\(S_2=2+2^2+2^3+2^4+.........+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+.....+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(2+2^2+2^3+2^4\right)+2^5\left(2+2^2+2^3+2^4\right)+......+2^{97}\left(2+2^2+2^3+2^4\right)\)
\(=2.31+2^5.31+......+2^{97}.31\)
\(=31\left(2+2^5+....+2^{97}\right)⋮31\left(đpcm\right)\)
a) S = 5 + 52 + 53 + ... + 5100
=> S = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 599 + 5100 )
=> S = 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 599( 1 + 5 )
=> S = 5 . 6 + 53 . 6 + ... + 599 . 6
=> S = ( 5 + 53 + ... + 599 ) . 6 chia hết cho 6
=> S chia hết cho 6
b) S1 = 2 + 22 + 23 + ... + 2100
=> S1 = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
=> S1 = 2( 1 + 2 + 22 + 23 + 24 ) + ... +296( 1 + 2 + 22 + 23 + 24 )
=> S1 = 2 . 31 + ... + 296 . 31
=> S1 = ( 2 + ... + 296 ) . 31 chia hết cho 31
=> S1 chia hết cho 31
c) S2 = 165 + 215
=> S2 = ( 24 )5 + 215
=> S2 = 220 + 215
=> S2 = 220( 1 + 25 )
=> S2 = 220 . 33 chia hết cho 33
=> S2 chia hết cho 33
\(S1=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6.\left(5+5^3+...+5^{99}\right)⋮6\)
câu b tương tự
\(S3=16^5+21^5\)
vì 16+21=33 chia hết cho 33
=>165+215 chia hết cho 33
P/S: theo công thức:(n+m chia hết cho a=> nb+mb chia hết cho a)
S1 = 5+52+53+...+599+5100
=5. (1+5)+53 . (1+5) + ... + 599.(1+5)
= 5.6 +53.6+..+ 599.6
=6.(5+53 + ... +599):6
vậy x = ...
b)2+22+23+...+299+2100
=2.(1+2)+23.(1+2) + ... + 299.(1+2)
=2.3+23+..+299):3
= ....
c)165+215
vì 16+21 chia hế 33 nên
theo công thức(n+m chia hết cho a=(nb+mb)
\(a ) \) \(Ta\) \(có :\) \(5^5 -5^4+5^3\)
\(= 5^3 . ( 5^2 - 5 + 1)\)
\(= 5^3 . 21\)\(⋮\)\(7\)
\(Vậy :\) \(5^5 - 5^4 + 5^3 \) \(⋮\)\(7\)
\(b )\) \(Ta\) \(có : \) \(16^5 + 2\)\(15\)
\(= ( 2^4 )^5 .2\)\(15\)
\(= 2\)\(20\) \(.2\)\(15\)
\(= 2\)\(15\) \(. ( 2 ^5 + 1 )\)
\(= 2\)\(15\) \(.33\)\(⋮\)\(33\)
\(Vậy : \) \(16^ 5 + 2 \)\(15\) \(⋮\)\(33\)
a) 94260 - 35137 = 9424.15 - 35137 = (...6) - (...1) = (...5) có chữ số tận cùng alf 5 nên chia hết cho 5
a) Xét chữ số tận cùng
b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\) chia hết cho 33
áp dụng t/c máy tính
xét 165+215 không chia hết cho 33
=> đề bài vô nghiệm