K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2015

n2 + n + 1 = n.(n+1) + 1.

Vì n.(n+1) là tích hai số tự nhiên liên tiếp, trong 2 số liên tiếp luôn luôn có 1 số chẵn => n.(n+1) là số chẵn, cộng thêm 1 sẽ là số lẻ => n.(n+1) + 1 là số lẻ, không chia hết cho 2.

Để chứng minh n.(n+1) + 1 không chia hết cho 5 ta thấy hai số n và n+1 có thể có các chữ số tận cùng sau:

    n   tận cùng là 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; tương ứng số tận cùng của n+ 1 như sau:

n+ 1 tận cùng là 1, 2, 3, 4, 5, 6, 7, 8, 9, 0

=> tích của n.(n+1) tận cùng là:

                              0, 2, 6, 2, 0, 0, 2, 6, 2, 0

Hay là n.(n+1) tận cùng là 0, 2, 6

=> n.(n+1) +1 tận cùng là: 1, 3, 7  không chia hết cho 5

4 tháng 1 2018

n2+n+1=n.(n+1)+1

do n.(n+1) là tích hai số tự nhiên liên tiếp nên nó chia hết cho 2.Khi nó cộng với 1 thì sẽ không chia hết cho 2

do n.(n+1) là tích hai số tự nhiên liên tiếp nên nó có chữ số tận cùng là 0,2,6 và khi cộng với 1 thì có đuôi là 1,3,7 và không chia hết cho 5

vậy số đó không chia hết cho 2 và 5

4 tháng 1 2018

khó thế

3 tháng 12 2015

Bài 1:

Để 275x chia hết cho 5 => x = 0 hoặc = 5

Trường hợp 1: 2750 chia hết cho 5

2750 chia hết cho 25

2750 chia hết cho 125

Trường hợp 2: 2755 chia hết cho 5

2755 không chia hết cho 25

2755 không chia hết cho 125

=> x = 0

3 tháng 12 2015

tất nhiên toán BDHSG mà 

 

15 tháng 10 2015

b;

bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.

.......................................................................3......n=3k và 3k + 1 và 3k+2

c;

bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9

d;tương tự b

e;g;tương tự a

20 tháng 10 2016

Giả sử \(n^2+5.n+5⋮25\left(1\right)\)

\(\Rightarrow n^2+5.n+5⋮5\)

Do \(5.n⋮5;5⋮5\Rightarrow n^2⋮5\)

Mặt khác, 5 là số nguyên tố \(\Rightarrow n⋮5\)

\(\Rightarrow n^2⋮25;5.n⋮25\)\(5⋮̸25\)

\(\Rightarrow n^2+5.n+5⋮̸25\), trái với (1)

Vậy \(n^2+5.n+5⋮̸25\forall n\in N\left(đpcm\right)\)

 

15 tháng 10 2017

Ta có: n2 + n = n . n + n = n.(n + 1)

Ta nhận thấy n.(n + 1) là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng có thể là 0 ; 2 ; 6.

Do đó, n.(n + 1) + 6 có thể có chữ số tận cùng là 2 ; 6 ; 8.

Vì tận cùng là 2 ; 6 ; 8 không chia hết cho 5 nên suy ra n2 + n + 6 không chia hết cho 5.

Vậy \(n^2+n+6⋮5\).

hihi Đúng thì tick nha letienluc!vui