K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

Áp dụng bất đẳng thức Cauchy - Schwarz ta được :

\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4abcd\)

Dấu "=" xảy ra \(a=b=c=d\) (đpcm)

3 tháng 10 2016

a4 + b4 + c4 + d4 =  40000 + a000 + b00 + c0 + d

a4 + b4 + c4 + d4 - d = 4abc0 

a4 + b4 + c4 + d4 - abcd = 40000

nếu a ; b ; c ; d bằng nhau thì 

4 + 4 + 4 + 4 - abcd = 40000

a16 - abcd = 40000

cho a  = 1 ; vậy biểu thức là :

16 - abcd = 40000

vậy không thể chứng minh được 

nhé !

Kết luận :  .....................................................

3 tháng 10 2016

a4 ; b4;....đều là số dương nên theo bđt cosi ta có: 

a4 + b4 + c4 + d4 >= 4căn mũ 4 của (abcd)4 >= 4abcd

dấu = chỉ xảy ra khi a=b=c=d (dpcm)

7 tháng 10 2019

Câu hỏi của Nguyễn Tất Anh Quân - Toán lớp 8 - Học toán với OnlineMath

Tham khảo

7 tháng 10 2019

Áp dụng BĐT Cauchy cho 4 số dương

\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{\left(abcd\right)^4}\)

\(=4abcd\)

(Dấu "="\(\Leftrightarrow a=b=c=d\))

11 tháng 6 2015

\(0=a^4+b^4+c^4+d^4-4abcd\)

\(=\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(a^2b^2-2ab.cd+c^2d^2\right)\)

\(=\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+\left(ab-cd\right)^2\)

Dấu "=" xảy ra khi và chỉ khi các số trong ngoặc bằng 0 hay \(a=b=c=d\)

11 tháng 6 2015

a^4+b^4+c^4+d^4=4abcd

=>a^4-2a^2b^4+b^4+c^4-2c^2d^2+d^4+2a^2 b^2-4abcd + 2c^2 d^2=0

=> (a^2-b^2)^2+(c^2-d^2)^2+2(ab-cd)^2=0

Tới đây có thể suy ra a+b+c+d

5 tháng 5 2019

Áp dụng bất đẳng thức Cô-si cho các số dương \(a^4,b^4,c^4,d^4\), ta có:

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^4b^4}+2\sqrt{c^4d^4}\)

\(=2a^2b^2+2c^2d^2\ge2\sqrt{2a^2b^2\cdot2c^2d^2}=2\cdot2\left|abcd\right|=4\left|abcd\right|\ge4abcd\)

Dấu "=" khi a = b = c = d.

Cách khác áp dụng cho 4 số luôn:

\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4\left|abcd\right|\ge4abcd\).

Vậy......................

5 tháng 5 2019

Áp dụng BĐT Cô-si ta có:

a4 + b4 ≥ 2a2b2

c4 + d4 ≥ 2c2d2

⇒ a4 + b4 + c4 + d4 ≥ 2a2b2 + 2c2d2

⇔ VT ≥ 2\(\sqrt{4\text{a}^2b^2c^2d^2}\) = 4abcd = VP

Vậy a4 + b4 + c4 + d4 ≥ 4abcd

30 tháng 6 2015

giả sử a=b=c=d => \(a^4+a^4+a^4+a^4=4.a.a.a.a\Leftrightarrow4a^4=4a^4\)=> thỏa mãn điều kiện đầu bài

=> điểu giả sử đúng

30 tháng 6 2015

Áp đụng BĐT co si ta có:

a4+b4>2a2b2

b4+c4>2b2c2

c4+d4>2c2d2

d4+a4>2a2d2

=>2(a4+b4+c4+d4)>2(a2b2+b2c2+c2d2+a2d2)

=>a4+b4+c4+d4>a2b2+b2c2+c2d2+a2d2(1)

Dấu"=" xảy ra <=>a=b=c=d

Tiếp tục ta có:

a2b2+c2d2>2abcd

b2c2+a2d2>2bcd

=>a2b2+b2c2+c2d2+a2d2>4abcd(2)

Từ 1 và 2 =>a4+b4+c4+d4>4abcd

Dấu "=" xảy ra <=>a=b=c=d

=>a4+b4+c4+d4=4abcd<=>a=b=c=d

7 tháng 10 2019

Áp dụng BĐT Cauchy cho 4 số dương:

\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{\left(abcd\right)^4}=4abcd\)

(Dấu "="\(\Leftrightarrow a=b=c=d\))

\(\Rightarrow a=b=c=d=\frac{2016}{4}=504\)

10 tháng 10 2019

Bài này em làm nhầm rồi nhé: chú ý: \(\sqrt[4]{\left(abcd\right)^4}=\left|abcd\right|\ne abcd\)  nhé!