K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

a) \(m^3+3m^2-m-3\)

\(=m\left(m^2-1\right)+3\left(m^2-1\right)\)

\(=\left(m^2-1\right)\left(m+3\right)\)

\(=\left(m-1\right)\left(m+1\right)\left(m+3\right)\)

Mà n lẻ nên ta có \(m=2k+1\)

Từ đó ta có tích :

\(\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=2k\cdot2\left(k+1\right)\cdot2\cdot\left(k+2\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Dễ thấy \(k\left(k+1\right)\left(k+2\right)\)là tích của 3 số nguyên liên tiếp nên tích đó chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)⋮8\cdot6=48\left(đpcm\right)\)

4 tháng 1 2019

Biết làm câu b k chỉ cho mình với 

17 tháng 4 2017

a) phân tích nhân tử có cái trong ngoặc bằng (\(m^2-1\))\(\left(m+3\right)\)=(m-1)(m+1)(m+3)

có 3 số trên là 3 số chẵn liên tiếp suy ra tích trên chia hết cho 8 mà tích 3 số chẵn liên tiếp luôn chia hết cho6 nên tích trên chia hết cho 48

b)có \(5^{2n}\)đồng dư với 25 (mod của 19) mà 25 đồng dư với 6(mod của 19) suy ra \(5^{2n}\)đồng dư với \(6^n\)(mod của 19) nên cái trong ngoặc đồng dư với \(6^n\left(7+12\right)\)=\(6^n\).19 đồng dư với 0 ( mod của 19) suy ra đpcm

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
15 tháng 7 2016

a) Với n=1 thì \(7^{^{ }3}+8^3\) chia hết cho \(7^2-56+8^2nên\) chia hết cho 19

Giả sử \(7^{k+2}+8^{k+2}\) chia hết cho 19 (k >_ 1)

Xét \(7^{k=3}+8^{2k+3}=7.7^{k+2}+64.8^{2k+1}=7.\left(7^{k+2}+8^{2k+1}\right)+57.8^{2k+1}\) chia hết cho 19

 

15 tháng 7 2016

Muộn rồi b chiều tớ hứa là sẽ làm 4h30' chiều

AH
Akai Haruma
Giáo viên
2 tháng 6 2024

1/

$A=n^3+3n^2-n-3=n^2(n+3)-(n+3)=(n^2-1)(n+3)$

$=(n-1)(n+1)(n+3)$

Do $n$ lẻ nên đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:

$A=(2k+1-1)(2k+1+1)(2k+1+3)=2k(2k+2)(2k+4)$

$=8k(k+1)(k+2)$

Vì $k,k+1, k+2$ là 3 số tự nhiên liên tiếp nên trong đó có ít nhất 1 số chẵn, 1 số chia hết cho 3.

$\Rightarrow k(k+1)(k+2)\vdots 2, k(k+1)(k+2)\vdots 3$

$\Rightarrow k(k+1)(k+2)\vdots 6$ (do $(2,3)=1$)

$\Rightarrow A\vdots (8.6)$ hay $A\vdots 48$.

 

AH
Akai Haruma
Giáo viên
2 tháng 6 2024

2/

$B=n^{12}-n^8-n^4+1=(n^{12}-n^8)-(n^4-1)$

$=n^8(n^4-1)-(n^4-1)=(n^8-1)(n^4-1)$
$=(n^4-1)(n^4+1)(n^4-1)$

Đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:

$(n^4-1)(n^4-1)=[(n-1)(n+1)(n^2+1)]^2$
$=[2k(2k+2)(4k^2+4k+2)]^2=[8k(k+1)(2k^2+2k+1)]^2$

Vì $k,k+1$ là 2 số tự nhiên liên tiếp nên $k(k+1)\vdots 2$

$\Rightarrow 8k(k+1)\vdots 16$

$\Rightarrow (n^4-1)(n^4-1)=[8k(k+1)(2k^2+2k+1)]^2\vdots 16^2=256$

Mà $n^4+1\vdots 2$ do $n$ lẻ.

$\Rightarrow (n^4-1)(n^4-1)(n^4+1)\vdots (2.256)$

Hay $B\vdots 512$ 

5 tháng 11 2016

nơi bài 2 là Cho p là số nguyên tố > 7 nha

a, x2+5y2+2y-4xy-3=0

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\)(vô lí)

\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)

lúc đó \(\left(x+6\right)^2+4=4\Rightarrow x=-6\)

Vậy.................

5 tháng 3 2020

a) \(x^2+5y^2+2y-4xy-3=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta thấy : \(4=0+4\) là tổng hai số chính phương

Thử các giá trị \(\orbr{\begin{cases}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{cases}}\)

Ta thấy : \(y=-3\) đạt giá trị nhỏ nhất.

Khi đó : \(x^2+5.\left(-3\right)^2+2\left(-3\right)-4x\left(-3\right)-3=0\)

\(\Leftrightarrow x=-6\)

Vậy : \(\left(x,y\right)=\left(-6,-3\right)\) với y nhỏ nhất thỏa mãn đề.

P/s : Không chắc lắm ....