K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

a) VP=(a-b)2+4ab

        =a2-2ab+b2+4ab

        =a2+b2+2ab

        =(a+b)2=VT

Vậy (a+b)^2 = (a-b)^2 +4ab

b) VP=(a+b)2-4ab

        =a2+2ab+b2-4ab

        =a2-2ab+b2

        =(a-b)2=VT

Vậy (a-b)^2 = (a+b)^2 - 4ab

 

c)

VP=(ax-by)2+(ay+bx)2

=a2x2-2axby+b2y2+a2y2+2axby+b2x2

=a2x2+b2y2+a2y2+b2x2

=(a2x2+b2x2)+(b2y2+a2y2)

=x2.(a2+b2)+y2.(a2+b2)

=(a2+b2)(a2+y2)=VT

Vậy ( a^2 + b^2 ).(x^2 +y^2) = (ax - by)^2 +(ay+bx)^2

 

28 tháng 5 2016

a) \(\left(a+b\right)^2=a^2+2ab+b^2\left(1\right)\)

\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2-2ab+4ab+b^2=a^2+2ab+b^2\left(2\right)\)

Từ (1) và (2) => đpcm

b) \(\left(a-b\right)^2=a^2-2ab+b^2\left(3\right)\)

\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2+2ab-4ab+b^2=a^2-2ab+b^2\left(4\right)\)

Từ (3) và (4) =>đpcm

c) \(\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)\)

\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2\left(5\right)\)

\(\left(ax-by\right)^2+\left(ay+bx\right)^2=a^2x^2-2axby+b^2y^2+a^2y^2+2aybx+b^2x^2\)

\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2\left(6\right)\)

Từ (5) và (6) =>đpcm

24 tháng 6 2016

a) Ta có: \(\left(a+b\right)^2=4ab\)<=> \(a^2+b^2+2ab=4ab\)

                                               <=> \(a^2-2ab+b^2=0\)

                                                <=> \(\left(a-b\right)^2=0\)=> a=b (đpcm)

b) Ta có: \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

<=> \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

<=> \(a^2y^2+b^2x^2-2axby=0\)

<=>\(\left(ay-bx\right)^2=0\)

<=>ay=bx(đpcm)

15 tháng 8 2018

a) (a+b)2 = (a-b)2 +4ab

⇔ (a+b)2 = a2 - 2ab + b2 +4ab

⇔ (a+b)2 = a2 + 2ab + b2

⇔ (a+b)2 = (a+b)2

⇒ (a+b)2 = (a-b)2 +4ab (dpcm)

15 tháng 8 2018

b) (a-b)2 = (a+b)2 - 4ab

⇔ (a-b)2 = a2 + 2ab + b2 - 4ab

⇔ (a-b)2 = a2 - 2ab + b2

⇔ (a-b)2 = (a-b)2

⇒ (a-b)2 = (a+b)2 - 4ab (dpcm)

8 tháng 10 2015

b)(a-b)^2
=a^2 -2ab+b^2
=a^2 +2ab+b^2 -4ab
=(a+b)^2 - 4ab
a)(a+b)^2
=a^2 +2ab+b^2
=a^2 -2ab+b^2 +4ab
=(a-b)^2 + 4ab

c)a^3+b^3

=(a^3+3a^2b+3ab^2+b^2)-(3a^2b+3ab^2)

=(a+b)^3-3ab(a+b)

d)a^3-b^3

=(a^3-3a^2b+3ab^2-b^3)+(3a^2b-3ab^2)

=(a-b)^3+3ab(a-b)

e)(a^2+b^2)(x^2+y^2)

=(a.x)^2+(b.x)^2+(a.y)^2+(b.y)^2

=((a.x)^2-2abxy+(b.y)^2)+((a.y)^2-2abxy+(b.x)^2)

=(ax-by)^2+(ay+bx)^2

l-ike giùm mik vs công sức cả buổi đấy

24 tháng 9 2020

Câu 1:

A=x^2- y^2=(x-y)(x+y)

Thay x=17, y=13 vào A, ta có: A= (17-13)(17+13)=4.30=120

=> Vậy A=120 tại x=17,y=13.

b, B= (2+1)(22+1)(24+1)(28+1)(216+1) (đề bài đúng)

      = 1.(2+1)(22+1)(24+1)(28+1)(216+1) 

      = (2-1)(2+1)(22+1)(24+1)(28+1)(216+1) 

      = (22-1)(22+1)(24+1)(28+1)(216+1) 

      = (24-1)(24+1)(28+1)(216+1) 

      = (28-1)(28+1)(216+1) 

       = (216-1) (216+1)

       = 232-1

=> B= = 232-1

       

      

Bài 1 :

a,Ta có :

\(A=x^2-y^2\)

\(=\left(x-y\right)\left(x+y\right)\)

Với x = 17 và y = 13 ta có :

\(A=\left(17-13\right)\left(17+13\right)\)

\(=4.30\)

\(=120\)

Vậy x = 120 với x = 17 và y = 13 .

b, Nhân biểu thức đã cho với ( 2 - 1 ) ta được :

\(\left(2-1\right)B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow\left(2-1\right)B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow1.B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow B=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow B=2^{32}-1\)

31 tháng 5 2018

1. \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

\(VP=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2\)

\(\Rightarrow VT=VP\)

2. \(a^4-b^4=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)

\(VP=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)=\left(a^2-b^2\right)\left(a^2+b^2\right)=a^4+a^2b^2-b^2a^2-b^4=a^4-b^4\)

\(\Rightarrow VT=VP\)

3. \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax-by\right)^2+\left(bx+ay\right)^2\)

\(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)

\(VP=\left(ax-by\right)^2+\left(bx+ay\right)^2=a^2x^2-2axby+b^2y^2+b^2x^2+2bxay+a^2y^2=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)

\(\Rightarrow VT=VP\)

a) Sửa đề: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

Ta có: \(VP=\left(a-b\right)^2+4ab\)

\(=a^2-2ab+b^2+4ab\)

\(=a^2+2ab+b^2\)

\(=\left(a+b\right)^2=VT\)(đpcm)

b) Ta có: \(VT=\left(a-b\right)^2\)

\(=a^2-2ab+b^2\)

\(=a^2+2ab+b^2-4ab\)

\(=\left(a+b\right)^2-4ab=VP\)(đpcm)

c) Ta có: \(VP=\left(ax-by\right)^2+\left(ay+bx\right)^2\)

\(=a^2x^2-2axby+b^2y^2+a^2y^2+2aybx+b^2x^2\)

\(=a^2x^2+b^2y^2+a^2y^2+b^2x^2\)

\(=a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)\)

\(=\left(x^2+y^2\right)\left(a^2+b^2\right)=VT\)(đpcm)

10 tháng 8 2019

\(1.\)

\(a,\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)

\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)

10 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn dương)

b) \(x^2-x+\frac{1}{2}=x^2-x+\frac{1}{4}+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)(luôn dương)