Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)
b/ \(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)
c/ \(\Leftrightarrow a^2+2a< a^2+2a+1\)
\(\Leftrightarrow0< 1\) (hiển nhiên đúng)
d/ \(\Leftrightarrow m^2-2m+1+n^2-2n+1\ge0\)
\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(m=n=1\)
e/ \(\Leftrightarrow1+\frac{a}{b}+\frac{b}{a}+1\ge4\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
d)m2+n2 +2 >=2(m+n)
=>m*m+n*n+1+1>=2m+2n
Ta thấy:m*m+1>=2m
n*n+1>=2n
Cộng theo vế ta có đpcm
a) \(a^2+b^2-2ab=\left(a+b\right)^2\)
Vì \(\left(a+b\right)^2\ge0\Rightarrow\)\(a^2-b^2-2ab\ge0\)
b) Ta có: \(a^2\ge0\)
\(b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge0\Leftrightarrow\frac{a^2+b^2}{2}\ge0\)
c) Ta có: \(a\left(a+2\right)=a^2+2a\)
\(\left(a+1\right)^2=a^2+2a+1\)
Vì \(a^2+2a< a^2+2a+1\)
Suy ra: \(a\left(a+2\right)< \left(a+1\right)^2\)
e) \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{a}+\frac{a+b}{b}=2+\frac{a}{b}+\frac{b}{a}\)
= \(\frac{a^2}{ab}+\frac{b^2}{ab}+2=\frac{a^2+b^2}{ab}+2\)
Vì a>0, b>0 \(\Rightarrow\)\(\frac{a^2+b^2}{ab}\)\(\ge2\Rightarrow2+\frac{a^2+b^2}{ab}\ge_{ }4\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
Câu d mình chưa nghĩ ra
a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3
b vì a>3 => a+2>3+2 =>a+2>5
c vì m>n =>m-n>n-n=>m-n>0
đ vì m-n=0 =>m-n+n>0+n=>m>n
e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)
vì -4>-5 => m-4>m-5 (2)
từ (1) và (2) =>m-5<n-4
a) a2+b2-2ab=(a-b)2>=0
b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=> \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)
c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)
a: 3(x-1)-2(x+1)=-3
=>3x-3-2x-2=-3
=>x-5=-3
=>x=2
Thay x=2 vào pt(1), ta được:
\(2m^2+m-6=0\)
=>2m2+4m-3m-6=0
=>(m+2)(2m-3)=0
=>m=-2 hoặc m=3/2
c: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
a) \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
b) \(\frac{a^2+b^2}{2}=\frac{a^2}{2}+\frac{b^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{b^2}{2}}=2ab\)
c)\(a\left(a+2\right)=a^2+2a< a^2+2a+1=\left(a+1\right)^2\)
TOÀN BÀI BẤT ĐẲNG THỨC CƠ BẢN. TỰ LÀM NỐT NHÉ. NHỚ BẤM ĐÚNG CHO MÌNH