Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ( \(x^',y^',z^'\)) là 1 nghiệm thoả mãn pt với \(z^'\)là số nhỏ nhất.
Không mất tính tổng quát, giả sử \(x^'\le y^'\le z^'\)
Mặt khác xét pt bậc 2 ẩn z :
\(z^2-\left(7x'y^'-2x^'-2y^'\right)z+\left(z^'+y^'\right)^2=0\)
Hiển nhiên pt này có 1 nghiệm z'
Theo định lý Viete thì nghiệm còn lại của nó là \(\frac{\left(x^'+y^'\right)^2}{z'}\inℤ\)
Như vậy \(\left(x',y',\frac{\left(x'+y'\right)^2}{z^'}\right)\)cũng là bộ số thoả mãn pt
Nếu giả sử x'+y' < z' \(\Rightarrow\frac{\left(x'+y'\right)^2}{z'}< z'\)vô lý vì ( x',y',z') cũng là 1 bộ số thoả mãn pt và vì tính nhỏ nhất của z'
Do đó ta phải có \(z'\le x'+y'\). Khai triển pt ban đầu và chia 2 vế của nó cho y'z'x' ta được:
\(7\le\frac{x'}{y'z'}+\frac{y'}{x'z'}+\frac{z'}{x'y'}+\frac{2}{x'}+\frac{2}{y'}+\frac{2}{z'}\)
\(\le\frac{1}{z'}+\frac{1}{x'}+\frac{x'+y'}{x'y'}+\frac{2}{x'}+\frac{2}{y'}+\frac{2}{z'}=\frac{4}{x'}+\frac{3}{y'}+\frac{2}{z'}\le\frac{10}{x'}\)
\(\Rightarrow x'=1\)
Khi đó \(y'\le z'\le y'+1\)\(\Rightarrow\orbr{\begin{cases}z'=y\\z'=y'+1\end{cases}}\)
+ Nếu z'=y' thì ta có pt \(\left(1+2z'\right)^2=7z'^2\Leftrightarrow3z'^2-4z'-1=0\)\(\Leftrightarrow z'=\frac{2\pm\sqrt{7}}{3}\)(loại)
+ Nếu x'=y'+1 thì ta có pt \(\left(2+2z'\right)^2=7z'\left(z'+1\right)\Leftrightarrow3z'^2-z'-4=0\Leftrightarrow z\in\left\{-1;\frac{4}{3}\right\}\)(loại)
Vậy pt đã cho không có nghiệm nguyên ( đpcm)
1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7
Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.
Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.
3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có:
\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)
Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).
với n=1 thì x+y=z thì rất có nhiều x,y,z để tìm như 1+2=3,2+3=4,...
với n=2 thì các dạng 9k2+16k2=125k2 (k là số tự nhiên ) luôn xảy ra, còn nhiều dạng khác các bạn có thể tìm thêm
với n>2
nếu x2+y2=z2 suy ra (x/z)2+(y/z)2=1 mà x,y,z nguyên dương nên x/z<1,y/z<1 nên (x/z)2>(x/z)n,(y/z)2>(y/z)n suy ra 1>(x/z)n+(y/z)n
suy ra xn+yn<zn (1)
nếu x2+y2<z2 suy ra
(x/z)2+(y/z)2<1 mà x,y,z nguyên dương nên x/z<1,y/z<1 nên (x/z)2>(x/z)n,(y/z)2>(y/z)n suy ra (x/z)2+(y/z)2>(x/z)n+(y/z)n
mà (x/z)2+(y/z)2<1suy ra 1>(x/z)n+(y/z)n suy ra xn+yn<zn (2)
còn trường hợp x2+y2>z2 mình chưa nghĩ ra nha
bạn thông cảm nhé
@minhnguvn
Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
Lời giải:
Giả sử pt đã có nghiệm nguyên.
Ta biết rằng 1 số chính phương khi chia 4 dư $0,1$
Mà $x^2+y^2+z^2=2015\equiv 3\pmod 4$ nên $(x^2,y^2,z^2)$ chia $4$ dư $1,1,1$. Do đó $x,y,z$ đều lẻ.
Đặt $x=2m+1; y=2n+1, z=2p+1$ với $m,n,p$ nguyên
$x^2+y^2+z^2=2015$
$\Leftrightarrow (2m+1)^2+(2n+1)^2+(2p+1)^2=2015$
$\Leftrightarrow 4m(m+1)+4n(n+1)+4p(p+1)=2012$
$\Leftrightarrow m(m+1)+n(n+1)+p(p+1)=503$
Điều này vô lý vì mỗi số $m(m+1), n(n+1), p(p+1)$ đều chẵn.
Vậy điều giả sử sai, hay pt đã cho không có nghiệm nguyên.