K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 3 2022

Đặt \(f\left(x\right)=m\left(x-1\right)^3\left(x^2-4\right)+x^4-3\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R

\(f\left(1\right)=-2< 0\)

\(f\left(2\right)=13>0\)

\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc khoảng (1;2)

\(f\left(-2\right)=13>0\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc khoảng (-2;1)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm phân biệt

NV
12 tháng 5 2020

Xét \(f\left(x\right)=m\left(x-1\right)x\left(x-2\right)\left(x+2\right)+x^3-3x+1\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên mọi khoảng thuộc R

\(f\left(-2\right)=-1< 0\)

\(f\left(0\right)=1>0\)

\(\Rightarrow f\left(-2\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;0\right)\)

\(f\left(1\right)=-1< 0\)

\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\)

\(f\left(2\right)=3>0\)

\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 3 nghiệm thực pb

17 tháng 5 2016

a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.

Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).

Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.

b) Hàm số g(x) = cosx - x xác định trên R nên liên tục trên R.

Mặt khác, ta có g(0).g() = 1. (-) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; ).

17 tháng 5 2016

Hoàng anh gia lai và Võ Đong Anh Tuấn chắc chắn là 1 người

28 tháng 2 2022

same e :v

NV
1 tháng 3 2022

Đặt \(f\left(x\right)=x^4-\left(3m-2\right)x^3+mx-1\)

Hiển nhiên \(f\left(x\right)\) liên tục và xác định trên R

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^4-\left(3m-2\right)x^3+mx+1\right)=+\infty\) dương

\(\Rightarrow\) Luôn tồn tại 1 số thực \(a>0\) đủ lớn sao cho \(f\left(a\right)>0\)

\(\Rightarrow f\left(0\right).f\left(a\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;a\right)\) hay \(\left(0;+\infty\right)\)

\(\lim\limits_{x\rightarrow-\infty}\left(x^4-\left(3m-2\right)x^3+mx-1\right)=+\infty\) dương

\(\Rightarrow\) Luôn tồn tại 1 số thực \(b< 0\) sao cho \(f\left(b\right)>0\)

\(\Rightarrow f\left(0\right),f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)

Vậy phương trình luôn có ít nhất 2 nghiệm với mọi m