\(\dfrac{n+3}{n+2}\) tối giản 

Tính giá trị của biểu...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

ĐK:n≠-2

Gọi \(d=ƯCLN\left(n+3,n+2\right)\)

\(\Rightarrow n+3⋮d;n+2⋮d\\ \Rightarrow n+3-n-2⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy n+3 và n+2 nctn hay \(\dfrac{n+3}{n+2}\) tối giản

Với n=-2 trái vs ĐKXĐ nên A ko xác định

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

31 tháng 12 2022

a: DKXĐ: x<>1; x<>-1

b: \(A=\dfrac{x^2+2x+1+6-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(=\dfrac{x^2+2x+7-x^2+x-3x+3}{1}\cdot\dfrac{2}{5}=10\cdot\dfrac{2}{5}=4\)

23 tháng 10 2020

đéo biết

24 tháng 10 2020

1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2

2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)

Đẳng thức xảy ra khi a = 1

3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)

4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)

Do đó \(a^{2018}+b^{2019}=1+1=2\)

5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)

28 tháng 7 2017

a) Giá trị của phân thức được xác định khí x2 -1 ≠ 0 ⇒ x ≠ ±1
b) Ta có:cau bc) Bạn sai khi x = -1 thì không thoả mãn đk của x
Với các giá trị x ≠ ±1 thì có thể tính được giá trị của biểu thức.

28 tháng 11 2022

a: ĐKXĐ: x<>1; x<>-1

b: \(=\left(\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right)\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(=\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(=\dfrac{10}{2}\cdot\dfrac{4}{5}=5\cdot\dfrac{4}{5}=4\)

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Câu A:

Ta có:
\(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}=\frac{2n}{6}+\frac{3n^2}{6}+\frac{n^3}{6}\)

\(=\frac{2n+3n^2+n^3}{6}\)

Xét tử : \(2n+3n^2+n^3=n(n^2+3n+2)=n(n^2+n+2n+2)\)

\(=n[n(n+1)+2(n+1)]=n(n+1)(n+2)\)

\(n(n+1)(n+2)\) là tích của 3 số nguyên liên tiếp nên \(n(n+1)(n+2)\vdots 3\)

Vì $n(n+1)$ là tích của 2 số nguyên liên tiếp nên \(n(n+1)\vdots 2\)

\(\Rightarrow n(n+1)(n+2)\vdots 2\)

\((2,3)=1\Rightarrow n(n+1)(n+2)\vdots (2.3=6)\)

Do đó: \(A=\frac{n(n+1)(n+2)}{6}\in\mathbb{Z}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Câu B:

Ta có:

\(B=\frac{n^4}{24}+\frac{6n^3}{24}+\frac{11n^2}{24}+\frac{6n}{24}\)\(=\frac{n^4+6n^3+11n^2+6n}{24}\)

Xét mẫu:

\(n^4+6n^3+11n^2+6n=n(n^3+6n^2+11n+6)\)

\(=n[n^2(n+1)+5n(n+1)+6(n+1)]\)

\(=n(n+1)(n^2+5n+6)=n(n+1)[n^2+2n+3n+6]\)

\(=n(n+1)[n(n+2)+3(n+2)]\)

\(=n(n+1)(n+2)(n+3)\)

Vì $n(n+1)(n+2)$ là tích 3 số nguyên liên tiếp nên \(n(n+1)(n+2)\vdots 3\)

\(\Rightarrow n(n+1)(n+2)(n+3)\vdots 3\)

Vì $n,n+1,n+2,n+3$ là 4 số nguyên liên tiếp nên trong đó chắc chắn có một số chia $4$ dư $2$ , một số chia hết cho $4$

\(\Rightarrow n(n+1)(n+2)(n+3)\vdots (2.4=8)\)

Mà $(3,8)=1$ nên \(n(n+1)(n+2)(n+3)\vdots (8.3=24)\)

Do đó: \(B=\frac{n(n+1)(n+2)(n+3)}{24}\in\mathbb{Z}\) (đpcm)

21 tháng 4 2017

a) 2x2=2(x1)02x−2=2(x−1)≠0 khi x10x−1≠0 hay x1x≠1

x21=(x1)(x+1)0x2−1=(x−1)(x+1)≠0 khi x10x−1≠0x+10x+1≠0

hay x1x≠1x1x≠−1

2x+2=2(x+1)02x+2=2(x+1)≠0 khi x+10x+1≠0 hay x1x≠−1

Do đó điều kiện để giá trị của biểu thức được xác định là x1,x1x≠−1,x≠1

b) Để chứng minh biểu thức không phục thuộc vào biến x ta phải chứng tỏ rằng có thể biến đổi biểu thức này thành một hằng số.

Thật vậy:(x+12x2+3x21x+32x+2).4x

18 tháng 7 2017

a, \(2x-2\ne0\) khi \(2x\ne2\Leftrightarrow x\ne1\)

\(x^2-1=\left(x+1\right)\left(x-1\right)\ne0\) khi \(x+1\ne0\)\(x-1\Leftrightarrow x\ne-1\)\(x\ne1\)

\(2x+2=2\left(x+1\right)\ne0\) khi \(x\ne-1\)

điều kiên của x để giá trị của biểu thức được xác định là : \(x\ne-1\)\(x\ne1\)

b, \(\left(\dfrac{x+1}{2x-2}\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right).\dfrac{4x^2-4}{5}\)

= \(\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x+1\right)\left(x-1\right)}+\dfrac{-\left(x+3\right)}{2\left(x+1\right)}\right].\dfrac{4\left(x^2-1\right)}{5}\)

=\(\dfrac{\left(x+1\right)\left(x+1\right)+3.2-\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\dfrac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\dfrac{10}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\dfrac{40\left(x+1\right)\left(x-1\right)}{10\left(x+1\right)\left(x-1\right)}\)

Vậy giá trị biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến X

a: \(=\dfrac{\left(x+2\right)^2}{x}\cdot\dfrac{x+2-x^2}{x+2}-\dfrac{x^2+6x+4}{x}\)

\(=\dfrac{\left(-x^2+x+2\right)\left(x+2\right)}{x}-\dfrac{x^2+6x+4}{x}\)

\(=\dfrac{-x^3-2x^2+x^2+2x+2x+4-x^2-6x-4}{x}\)

\(=\dfrac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)

b,c: A=-(x^2+2x+2)

=-(x^2+2x+1+1)

=-(x+1)^2-1<=-1<0 với mọi x

Dấu = xảy ra khi x=-1

24 tháng 6 2017

Phân thức đại số

Phân thức đại số