Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)
Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)
\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)
\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)
\(\Rightarrow5n+1⋮d\)
\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
Gọi (2n+1;2n(n+1))=d
=>2n+1 chia hết cho d;2n2+2n chia hết cho d
=>2n+1 chia hết cho d;2nn+n+n chia hết cho d
=>2n+1 chia hết cho d;n(2n+1)+n chia hết cho d
Mà n(2n+1) chia hết cho d
=>2n+1 chia hết cho d;n chia hết cho d
=>2n+1 chia hết cho d;2n chia hết cho d
=>(2n+1)-2n chia hết cho d
=>1 chia hết cho d
=>d=1
=>(2n+1;2n(n+1))=1
Vậy 2n+1/2n(n+1) là phân số tối giản (đpcm)
a, \(A=\frac{a^3+a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+a\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b, Gọi ƯCLN(a2 + a - 1,a2 + a + 1) là d
=> a2 + a - 1 chia hết cho d
a2 + a + 1 chia hết cho d
=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d
=> 2 chia hết cho d
=> d = {1;2}
Mà a2 + a - 1 = a(a + 1) - 1 là số lẻ nên d là số lẻ
=> d khác 2
=> d = 1
Vậy A là phân số tối giản (đpcm)
a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)
Ta có : \(2n+5⋮d\)(1)
\(n+3⋮d\Rightarrow2n+6⋮d\)(2)
Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)
b, Để \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi
\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)
\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 3 | 1 | -1 |
n | -2 | -4 |
ne`, trả lời thj` trả lời cho nó hẳn hoi vào đấy nha, nên nhớ đây là toán.
2n+1 và 2n nguyên tố cùng nhau
xét 2n+1 và n+1
n+1=2n+2. mà 2n+2 và 2n+1 nguyên tố cùng nhau
hay 2(n+1) và 2n+1 nguyên tố cùng nhau. mà 2n+1 là số lẻ, 2 là số chẵn nên 2 và 2n+1 nguyên tố cùng nhau thì n+1 và 2n+1 cũng nguyên tố cùng nhau
=> 2n(n+1) và 2n+1 nguyên tố cùng nhau thì phân số trên đã tối giản