Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯC(5n-4,6n-5)=d
Ta có: 5n-4 chia hết cho d=>6.(5n-4)=30n-24 chia hết cho d
6n-5 chia hết cho d=>5,(6n-5)=30n-25 chia hết cho d
=>30n-24-(30n-25) chia hết cho d
=>1 chia hết cho d
=>d=1
=>(5n-4,6n-5)=1
=>Phân số 5n-4/6n-5 là phân số tối giản.
=>ĐPCM
Lời giải:
Gọi $d=ƯCLN(5n+6, 6n+7)$
$\Rightarrow 5n+6\vdots d; 6n+7\vdots d$
$\Rightarrow 6(5n+6)-5(6n+7)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
$\Rightarrow \frac{5n+6}{6n+7}$ là phân số tối giản.
Giả sử ƯCLN của (5n+1) và (6n+1) là d, ta cần chứng minh d = 1.
Thật vậy: Do d là ƯCLN của (5n+1) và (6n+1) nên \(\hept{\begin{cases}5n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow6\left(5n+1\right)-5\left(6n+1\right)⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d=1.\)
Vậy \(\frac{5n+1}{6n+1}\) là phân số tối giản.
\(\frac{5n+1}{6n+1}\)là phân số tối giản vì
\(\frac{5n+1}{6n+1}=\frac{5}{6}+\frac{n+1}{n+1}=\frac{5}{6}+1\)
Mà 5/6 là phân số tối giản nên 5n+1/6n+1 tối giản
Giả sử ƯCLN của (5n + 1) và (6n + 1) là d, ta cần chứng minh d = 1.
Do d là ƯCLN của (5n + 1) và (6n + 1) nên \(\hept{\begin{cases}5n+1⋮d\\6n+1⋮d\end{cases}}\Rightarrow6\left(5n+1\right)-5\left(6n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{5n+1}{6n+1}\)là phân số tối giản.
\(\text{Gọi ƯCLN(5n+1;6n+1) = d}\)
\(\Rightarrow5n+1⋮d\)và \(6n+1⋮d\)
\(\Rightarrow\left(6n+1\right)-\left(5n+1\right)⋮d\)
\(\Rightarrow n⋮d\)
\(\Rightarrow5n⋮d\)
Mà \(5n+1⋮d\)
\(\Rightarrow5n+1-5n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\)5n+1 và 6n+1 nguyên tố cùng nhau
=> p/s đó tối giản
Gọi \(ƯCLN\left(5n+1;6n+1\right)=d\)
\(\Rightarrow\)\(5n+1⋮d\) và \(6n+1⋮d\)
\(\Rightarrow\)\(6\left(5n+1\right)⋮d\) và \(5\left(6n+1\right)⋮d\)
\(\Rightarrow\)\(30n+6⋮d\) và \(30n+5⋮d\)
\(\Rightarrow\)\(\left(30n+6\right)-\left(30n+5\right)⋮d\)
\(\Rightarrow\)\(30n+6-30n-5⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d=1\)
\(\Rightarrow\)\(5n+1\) và \(6n+1\) là hai số nguyên tố cùng nhau vì có ước chung lớn nhất là 1
Vậy \(A=\frac{5n+1}{6n+1}\) là phân số tối giản
Chúc bạn học tốt ~
Gọi d là ƯCLN(7n+4,5n+3)
=>7n+4 chia hết cho d và 5n+3 chia hết cho d
=>5(7n+4)-7(5n+3) chia hết cho d
=>35n+20-35n-21 chia hết cho d
=>-1 chia hết cho d hay d=-1
Vậy 7n+4/5n+3 là pstg( vì có ƯCLN=-1)
Làm ơn cho mình 1 đ ú n g với,chắc chắn mình đúng......................
Gọi d = ƯCLN ( 7n + 4 ; 5n + 3 )
Ta cso :
7n + 4 chia hết cho d
5n + 3 chia hết cho d
=> 5 ( 7n + 4 ) chia hết cho d
7 ( 5n + 3 ) chia hết cho d
=> 35 n + 20 chia hết cho d
35n + 21 chia hết cho d
=> ( 35n + 21 ) - ( 35n + 20 ) chia hết cho d
=> 1 chia hết cho d
Vậy \(\frac{7n+4}{5n+3}\)là phân số tối giản
6n2 + 6n + 1/4n + 1
= 6n2 + 6n1 + 1/4n1 + 11
Xem xét ta thấy n1 là số tự nhiên mũ 1 nên không thể gộp lại để tính
= 61 + 62 + 11
= 64 + 42 + 11
= 101
Rút gọn lũy thừa thành : 10.10 = 2.5
Đặt d = ƯCLN(5n+1, 6n+1) thì
5n+1 chia hết cho d, 6n+1 chia hết cho d
=> 6(5n+1) - 5(6n+1) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1) = {1; -1} => d = 1
Vậy 5n+1/6n+1 tối giản với mọi STN n
Gọi d là UCLN của 5n+1 và 6n+1
\(\Rightarrow5n+1⋮d\)và \(6n+1⋮d\)
Hay \(6\left(5n+1\right)⋮d\)và \(5\left(6n+1\right)⋮d\)
\(\Leftrightarrow30n+6⋮d\)và \(30n+5⋮d\)
\(\Rightarrow30n+6-\left(30n+5\right)⋮d\)
Hay \(1⋮d\Rightarrow d=1hoac\left(-1\right)\Rightarrow dpcm\)
Ai thấy đúng k nha