K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Mình chứng minh theo phương pháp quy nạp
- Với n=1 thì phương trình ra 288 sẽ chia hết 288
- Với n=k => 7png.latex?^(2k+1) -48k - 7 chia hết 288
Chứng minh với n=k+1 thì đẳng thức chia hết 288
Thế n bằng k+1
png.latex?7^(2k+3)%20-48k-55 =png.latex?7^(2k+1).7^2%20-48k.7^2%20-7.7^2%20+2304k%20+288
png.latex?\Leftrightarrow%207^2.(7^(2k+1)%20-48k%20-7%20)%20+2304k%20+288
png.latex?\Leftrightarrow%207^2.(7^(2k+1)%20-48k%20-7%20) chia hết 288 ( chứng minh phần n=k)
2304 chia hết 288 => 2304k chia hết 288
288 thì chia hết 288
=> đẳng thức đúng với n=k+1
=> Dpcm

17 tháng 6 2017

a, Ta có:

\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)

\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)

Ta lại có:

\(9^n-2^n⋮9-2=7;2n.7⋮7\)

\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)

15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

7 tháng 7 2015

 7^(2n+1) -48n -7 chia hết cho 288 (1) 

Đặt S(n) = 7^(2n+1) - 48n -7 
Với n =0 thì S(0) = 7^1 -7 =0 chia hết cho 288 
Vậy (1) đúng với n =0 
Giả sử (1) đúng với n= k (k thuộc N* ) tức là: 
S(k) = 7^(2k+1) -48k -7 chia hết cho 288 
Ta cần C/m (1) đúng với n= k+1, nghĩa là phải C/m: 
S( k+1) = 7^[2(k+1) +1) ] -48(k+1) -7 chia hết cho 288 
Thật vậy ta có: 
S(k+1) = 7^(2k+3) -48k - 48- 7 
= 7^(2k+1). 49 - 48.49k +2304k -55 
= 49. ( 7^(2k+1) - 48k - 7) +2304k +288 
= 49.S(k) + 2304k +288 
Theo giả thiết quy nạp thì S(k) chia hết cho 288 
Mà 2304k và 288 cũng chia hết cho 288 
nên S(k+1) chia hết cho 288 (đpcm) 

17 tháng 4 2018

khó quá

18 tháng 9 2016

Ta có:

(5n + 7).(2n + 6)

= (5n + 7).2.(n + 3) chia hết cho 2 (đpcm)

18 tháng 9 2016

bài này thì sao (8n+1).(6n+5) ko chia hết cho 2 (với mọi n thuộc N)