Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)
Bài 1:
\(B=\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}+\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\)
\(=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{-\left(0,625-0,5+\frac{5}{11}+\frac{5}{12}\right)}+\frac{3\left(0,5+\frac{1}{3}-0,25\right)}{5\left(0,5+\frac{1}{3}-0,25\right)}\)
\(=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{-\left[5\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)\right]}+\frac{3}{5}\)
\(=\frac{-3}{5}+\frac{3}{5}\)
\(=0\)
Bài 2:
b) Giải:
Ta có: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{3a^6}{3b^6}=\frac{c^6}{d^6}=\frac{3a^6+c^6}{3b^6+d^6}\) (1)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{b+d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^6=\left(\frac{a+c}{b+d}\right)^6=\frac{a^6}{b^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{3a^6+c^6}{3b^6+d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\left(đpcm\right)\)
b/ Ta có: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{1}{2}\left[\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)+\left(\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)+\left(\frac{a^2}{b^2}+\frac{c^2}{a^2}\right)\right]\)
\(\ge\frac{1}{2}.\left(\frac{2a}{c}+\frac{2b}{a}+\frac{2c}{b}\right)=\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )
=(a + d )2 - (b +c )2 (1)
(a - b + c - d)(a + b - c - d)=(a - d)2 - (b - c)2 (2)
Từ (1) và (2) => a2 + 2ad + d2 - b2 - 2bc - c2=a2 - 2ad + d2 - b2 + 2bc - c2
4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\) (đpcm)
c) Áp dụng BĐT Cauchy-schwars ta có:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+b\right)^2}{a+b+c}=a+b+c\)
đpcm
a) \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
<=> \(a^4+b^4\ge ab\left(a^2+b^2\right)\)
Ta có: \(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}=\frac{a^2+b^2}{2}.\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\) với mọi a, b
Vậy \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
Dấu "=" xảy ra <=> a = b
b) \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)(1)
<=> \(2\left(a^4+b^4+c^4\right)\ge ab^3+ac^3+ba^3+bc^3+ca^3+cb^3\)
<=> \(\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ac\left(a^2+c^2\right)\) đúng áp dụng câu a
Vậy (1) đúng
Dấu "=" xảy ra <=> a = b = c.
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Ta có: \(\left(\frac{a-b}{c-d}\right)^4=\left(\frac{bk-b}{dk-d}\right)^4=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^4=\left(\frac{b}{d}\right)^4\) (1)
\(\frac{a^4+b^4}{c^4+d^4}=\frac{\left(bk\right)^4+b^4}{\left(dk\right)^4+d^4}=\frac{b^4.k^4+b^4}{d^4.k^4+d^4}=\frac{b^4\left(k^4+1\right)}{d^4\left(k^4+1\right)}=\frac{b^4}{d^4}=\left(\frac{b}{d}\right)^4\) (2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\left(đpcm\right)\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\left(\frac{a-b}{c-d}\right)^4\) (1)
Ta lại có:
\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\) (2)
Từ (1);(2)\(\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\)