K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 9 2018

Lời giải:

Đặt \((x+y)^2=a; (x-y)^2=b\)

\(\Rightarrow a+b=2(x^2+y^2)\)

Khi đó:

\((x+y)^6+(x-y)^6=a^3+b^3=(a+b)(a^2-ab+b^2)=2(x^2+y^2)(a^2-ab+b^2)\vdots x^2+y^2\)

Ta có đpcm.

20 tháng 5 2017
Ta có: (x+y)^6 +(x-y)^6= ((x+y)^2)^3+((x-y)^2)^3 Mà ((x+y)^2)^3+((x-y)^2)^3 chia hết cho (x+y)^2+(x-y)^2 Mặt khác (x+y)^2+(x-y)^2=X^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2=2*(x^2+y^2) Từ đó suy ra (x+y)^6+(x-y)^6 chia hết cho x^2+y^2
16 tháng 7 2017

Bài 1 : Ta có :

x^3-x^2-7x-a x-3 x^2 x^3-3x^2 2x^2-7x-a + 2x 2x^2 -6x -x - a - 1 -x + 3

Để \(x^3-x^2-7x-a\) chia hết cho x-3 thì :

-x - a = - x + 3

<=> -x + x - a = 3

<=> a = - 3

Vậy GT của a là - 3

16 tháng 7 2017

Bài 2 :

a) \(x^2-2xy-9z^2+y^2\)

= \(\left(x^2-2xy+y^2\right)-9z^2\)

= \(\left(x-y\right)^2-\left(3z\right)^2\)

= \(\left(x-y-3z\right)\left(x-y+3z\right)\) (1)

Thay x = 6 ; y=-4 ; z= 30 vào BT (1) ta được :

\(\left(x-y-3z\right)\left(x-y+3z\right)=\left(6+4-3.30\right)\left(6+4+3.30\right)\) = (-80) .100 = -8000

Vậy tại x = 6 ; y=-4 ; z=30 thì GT của BT (1) là -8000

b) \(\left(x^3-y^3\right):\left(x^2+xy+y^2\right)\)

= \(\left(x-y\right)\left(x^2+xy+y^2\right):\left(x^2+xy+y^2\right)\)

= ( x- y ) (2)

Thay x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) vào biểu thức (2) ta được :

\(\left(x-y\right)=\left(\dfrac{2}{3}-\dfrac{1}{3}\right)=\dfrac{1}{3}\)

Vậy tại x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) thì GT của BT (2) là \(\dfrac{1}{3}\)