K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

1 tháng 10 2016

Đề sai rồi bạn

Nếu ta thử n=0 thôi ta sẽ có:

 \(\left(7n-2\right)^2-\left(2n-7\right)^2=\left(-2\right)^2-\left(-7\right)^2=4-49=-45\) không chia hết cho 7 :(

30 tháng 10 2021

em chịu

11 tháng 10 2020

Ta có :

\(n^4+7\left(7+2n^2\right)\)

\(=n^4+49+14n^2\)

\(=\left(n^2+7\right)^2\)

Vì n là số nguyên lẻ nên n có dạng 2k + 1 với k là số nguyên 

 \(\Rightarrow\left(n^2+7\right)^2=\left[\left(2k+1\right)^2+7\right]^2\)

\(=\left[\left(4k^2+4k+1\right)+7\right]^2\)

\(=\left(4k^2+4k+8\right)^2\)

\(=\left[4k\left(k+1\right)+8\right]^2\)

Vì \(\hept{\begin{cases}k\left(k+1\right)⋮2\forall k\in Z\\4⋮4\end{cases}}\) nên \(4k\left(k+1\right)⋮8\forall k\in Z\)

\(\Rightarrow4k\left(k+1\right)+8⋮8\forall k\in Z\)

\(\Rightarrow\left[4k\left(k+1\right)+8\right]^2⋮8^2\forall k\in Z\)

\(\Rightarrow\left[4k\left(k+1\right)+8\right]⋮64\forall k\in Z\)

=> đpcm 

11 tháng 10 2020

n4 + 7( 7 + 2n2 )

= n4 + 14n2 + 49

= ( n2 + 7 )2

Vì n lẻ và n ∈ Z => n = 2k + 1 ( k ∈ Z )

Thế vô ta được :

[ ( 2k + 1 )2 + 7 ]2

= ( 4k2 + 4k + 1 + 7 )2

= ( 4k2 + 4k + 8 )2

= [ 4( k2 + k + 2 ) ]2

= { 4[ k( k + 1 ) + 2 ] }2

Ta có : k( k + 1 ) chia hết cho 2

            2 chia hết cho 2

=> k( k + 1 ) + 2 chia hết cho 2

=> 4[ k( k + 1 ) + 2 ] chia hết cho 8

=>  { 4[ k( k + 1 ) + 2 ] }2 chia hết cho 64

=> đpcm

13 tháng 2 2020

1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao

14 tháng 2 2020

thế a học lớp mấy