K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

bài này dễ

29 tháng 9 2016

Ta có: n3-n = n(n2-1) = n(n+1)(n-1)

Vì (n-1)n(n+1) là 3 số nguyên liên tiếp nên (n-1)n(n+1) chia hết cho 3

Hay n3-n chia hết cho 3     (1)

Mặt khác : (n-1)n là 2 số nguyên liên tiếp nên (n-1)n(n+1) chia hết cho 2

Hay n3-n chia hết cho 2         (2) 

Từ (1) và (2) suy ra: n3-n chia hết cho 6

18 tháng 10 2015

n^3 - n 
n(n^2 - 1) 
n(n - 1)(n + 1) 

Vì n, (n - 1), (n + 1) là ba số nguyên liên tiếp, trong đó, có 1 số chia hết cho 2, một số chia hết cho 3 nên tích 3 số chia hết cho 6 

=> n(n - 1)(n + 1) chia hết cho 6 
<=> (n^3 - n) chia hết cho 6

18 tháng 10 2015

Ta có : n3 - n = n . ( n2 - 1 )

                     = n . ( n -1 ) . ( n + 1 )

   Đây là tích 3 số tự nhiên liên tiếp => nó chia hết cho 2 ; 3

Vậy n3 - n chia hết cho 6 

12 tháng 7 2015

Ta có: n3-n=n.(n2-1)=n.(n-1).(n+1)=(n-1).n.(n+1)

Vì n-1,n và n+1 là 3 số tự nhiên liên tiếp.

=>(n-1).n.(n+1) chia hết cho 3(1)

Lại có: Vì n-1 và n là 2 số tự nhiên liên tiếp.

=>(n-1).n chia hết cho 2.

=>(n-1).n.(n+1) chia hết cho 2(2)

Từ (1) và (2) ta thấy.

(n-1).n.(n+1) chia hết cho 3 và 2.

mà (3,2)=1

=> (n-1).n.(n+1) chia hết cho 6.

Vậy n3-n chia hét cho 6 với mọi số tự nhiên n.

10 tháng 10 2017

x=120, y=90

10 tháng 7 2016

\(n^3-n=n\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right)\)

Vì (n-1).n.(n+1) là tích ba số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2,3) = 1 => n3-n chia hết cho 2x3=6 với mọi số nguyên n

4 tháng 8 2015

6=2x3

n3-n=n(n2-1)=n(n-1)(n+1) 

Vì n(n+1)(n-1) là tích của 3 số liên tiếp , chắc chắn chứa bội số của 2 và 3

Nên n3-1 chia hết cho 6

19 tháng 1 2018

Ta có :

\(n\equiv0,1,2,3,4,5\left(mod6\right)\)

\(\Rightarrow n^3\equiv0^3,1^3,2^3,3^3,4^3,5^3\left(mod6\right)\)

\(\Rightarrow n^3\equiv0,1,8,27,64,125\left(mod6\right)\)

\(\Rightarrow n^3\equiv1,2,3,4,5,0\left(mod6\right)\)

\(\Rightarrow n^3-n\equiv0\left(mod6\right)\forall n\)

27 tháng 3 2016

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

20 tháng 8 2016

Bài 1: \(\left(5n+2\right)^2-4=\left(25n^2+2.2.5n+2^2\right)-4=25n^2+20n+4-4\)

\(=25n^2+20n=5n\left(5n+4\right)\)

Có \(5n\left(5n+4\right)⋮5\) (có cơ số 5n)

=> \(\left(5n+2\right)^2-4⋮5\)

Bài 2: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Đây là tích ba số tự nhiên liên tiếp nên chia hết cho 3.

Vậy: \(n^3-n⋮3\)

Bài 3: \(x^2\left(x-3\right)+12-4x=0\)

\(\Leftrightarrow x^2\left(x-3\right)+4\left(3-x\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow x^2=4,x=3\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\\x=3\end{array}\right.\)

20 tháng 8 2016

Câu 1:

Ta có:(5n+2)2-4=25n2+20n+4-4

                         =5.5n2+5.4n

                         =5.(5n2+4n)

       Vì 5.(5n2+4n) chia hêt cho 5

Suy ra:(5n+2)2-4

Câu 2:

Ta có:

n3-n=n.n2-n

       =n.(n2-1)

      =(n-1).n.(n+1)

       Vì (n-1);n và (n+1) là ba số tự nhiên liên tiếp

 Mà (n-1).n.(n+1) chia hết cho 3(1)

              Và (n-1).(n+1) chia hêt cho 2(2)

Từ (1) và (2) suy ra:(n-1).n.(n+1) chia hết cho 6

 

3 tháng 10 2016

\(2n^3+3n^2+n\)

\(=\left(2n^3+2n^2\right)+\left(n^2+n\right)\)

\(=2n^2\left(n+1\right)+n\left(n+1\right)\)

\(=n\left(n+1\right)\left(2n+1\right)\)

\(n\left(n+1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.

n chia 3 có thể dư 1 ; 2 hoặc không dư.

Nếu không dư, tích chắc chắn chia hết cho 3

Với n = 3k + 1 thì 2n+1 = 2 ( 3k + 1 ) + 1 = 6k + 3 chia hết cho 3

Với n = 3k + 2 thì n + 1 = 3k +2 + 1 = 3k + 3 chia hết cho 3

Do đó tích trên luôn chia hết cho 2 và 3

Mà ( 2 ;3 ) = 1 nên tích chia hết cho 2 . 3 = 6

Vậy ...