Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(n\left(2n+7\right)\left(7n+7\right)=7n\left(n+1\right)\left(2n+4+3\right)\)
\(=7n\left(n+1\right)2\left(n+2\right)+3.7\left(n+1\right)n\)
Ta có n(n+1)(n+2) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
(n+1)n là tích 2 số tự nhien liên tiếp nên chia hêt cho 3
=> 3.7.(n+1)n chia hết cho 6
=>\(n\left(2n+7\right)\left(7n+7\right)\) chia hết cho 6
2)
\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n+1\right)\left(n-1\right)-12n\)
Ta có n(n+1)(n - 1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
12n chia hết cho 6
=>\(n^3-13n\) chia hết cho 6
3)
\(m.n\left(m^2-n^2\right)=m^3.n-n^3.m=m.n\left(m^2-1\right)-m.n\left(n^2-1\right)\)
\(=n.\left(m-1\right)m\left(m+1\right)-m\left(n-1\right)n\left(n+1\right)\) chia hết cho 3
Đặt B = n3 - 13n = n3 - n -12n = n(n - 1)(n + 1) - 12n
Ta có : Trong 3 số nguyên liên tiếp tồn tại ít nhất 1 số chẵn và tồn tại ít nhất một số chia hết cho 3 nên tích của 3 số đó chia hết cho 2 và
chia hết cho 3 mà (2;3) = 1 nên tích 3 số nguyên liên tiếp chia hết cho 6
=> n(n - 1)(n + 1) chia hết cho 6 mà 12n chia hết cho 6
=> n3 - n chia hết cho 6
b;
bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.
.......................................................................3......n=3k và 3k + 1 và 3k+2
c;
bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9
d;tương tự b
e;g;tương tự a
-_-...10 phút nx!
\(n^3-13n=n^3-n-12n=n(n^2-1)-6\cdot2n=n(n-1)(n+1)-6\cdot2n\)
Ta có n(n-1)(n+1) là tích 3 số nguyênnên chia hết cho 2, 3. Mà 2 và 3 nguyên tố cùng nhau. Vậy n(n-1)(n+1) chia hết cho 2x3=6
Do đó : \(n^3-13n=n(n-1)(n+1)-6\cdot2n⋮6\)