Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n^3 - n
n(n^2 - 1)
n(n - 1)(n + 1)
Vì n, (n - 1), (n + 1) là ba số nguyên liên tiếp, trong đó, có 1 số chia hết cho 2, một số chia hết cho 3 nên tích 3 số chia hết cho 6
=> n(n - 1)(n + 1) chia hết cho 6
<=> (n^3 - n) chia hết cho 6
Ta có : n3 - n = n . ( n2 - 1 )
= n . ( n -1 ) . ( n + 1 )
Đây là tích 3 số tự nhiên liên tiếp => nó chia hết cho 2 ; 3
Vậy n3 - n chia hết cho 6
Ta có: n3-n=n.(n2-1)=n.(n-1).(n+1)=(n-1).n.(n+1)
Vì n-1,n và n+1 là 3 số tự nhiên liên tiếp.
=>(n-1).n.(n+1) chia hết cho 3(1)
Lại có: Vì n-1 và n là 2 số tự nhiên liên tiếp.
=>(n-1).n chia hết cho 2.
=>(n-1).n.(n+1) chia hết cho 2(2)
Từ (1) và (2) ta thấy.
(n-1).n.(n+1) chia hết cho 3 và 2.
mà (3,2)=1
=> (n-1).n.(n+1) chia hết cho 6.
Vậy n3-n chia hét cho 6 với mọi số tự nhiên n.
\(n^3-n=n\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right)\)
Vì (n-1).n.(n+1) là tích ba số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2,3) = 1 => n3-n chia hết cho 2x3=6 với mọi số nguyên n
Ta có: n3-n = n(n2-1) = n(n+1)(n-1)
Vì (n-1)n(n+1) là 3 số nguyên liên tiếp nên (n-1)n(n+1) chia hết cho 3
Hay n3-n chia hết cho 3 (1)
Mặt khác : (n-1)n là 2 số nguyên liên tiếp nên (n-1)n(n+1) chia hết cho 2
Hay n3-n chia hết cho 2 (2)
Từ (1) và (2) suy ra: n3-n chia hết cho 6
6=2x3
n3-n=n(n2-1)=n(n-1)(n+1)
Vì n(n+1)(n-1) là tích của 3 số liên tiếp , chắc chắn chứa bội số của 2 và 3
Nên n3-1 chia hết cho 6
Ta có :
\(n\equiv0,1,2,3,4,5\left(mod6\right)\)
\(\Rightarrow n^3\equiv0^3,1^3,2^3,3^3,4^3,5^3\left(mod6\right)\)
\(\Rightarrow n^3\equiv0,1,8,27,64,125\left(mod6\right)\)
\(\Rightarrow n^3\equiv1,2,3,4,5,0\left(mod6\right)\)
\(\Rightarrow n^3-n\equiv0\left(mod6\right)\forall n\)
\(2n^3+3n^2+n\)
\(=\left(2n^3+2n^2\right)+\left(n^2+n\right)\)
\(=2n^2\left(n+1\right)+n\left(n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
\(n\left(n+1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.
n chia 3 có thể dư 1 ; 2 hoặc không dư.
Nếu không dư, tích chắc chắn chia hết cho 3
Với n = 3k + 1 thì 2n+1 = 2 ( 3k + 1 ) + 1 = 6k + 3 chia hết cho 3
Với n = 3k + 2 thì n + 1 = 3k +2 + 1 = 3k + 3 chia hết cho 3
Do đó tích trên luôn chia hết cho 2 và 3
Mà ( 2 ;3 ) = 1 nên tích chia hết cho 2 . 3 = 6
Vậy ...
2n3+3n2+n=(2n3+2n2)+(n2+n)=2n2(n+1)+n(n+1)=n(n+1)(2n+1)n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2.n chia 3 có thể dư 1 ; 2 hoặc không dư.Nếu không dư, tích chắc chắn chia hết cho 3Với n = 3k + 1 thì 2n+1 = 2 ( 3k + 1 ) + 1 = 6k + 3 chia hết cho 3Với n = 3k + 2 thì n + 1 = 3k +2 + 1 = 3k + 3 chia hết cho 3Do đó tích trên luôn chia hết cho 2 và 3Mà ( 2 ;3 ) = 1 nên tích chia hết cho 2 . 3 = 6Vậy ...
TA CÓ :
n^3 + 3n^2 + 2n = n( n^2 + 3n + 2) = n( n+1) (n+2).
Mà n(n+1)(n+2) là một số chia hết cho 2 và 3, nên nó chia hết cho 6.
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
Đề sai rồi bn ơi! mik sửa đề nha
CMR : n\(^3\) - n chia hết cho 6 với mọi n nguyên
\(n^3-n=n\left(n^2-1\right)\) mà \(n^2-1=\left(n+1\right)\left(n-1\right)\)
\(\Rightarrow n^3-n=\left(n-1\right).n.\left(n+1\right)\)
biết :
* n -1 ; n ; n+1 là 3 số liên tiếp nên (n-1 ) x n x (n+1) chia hết cho 3 (1)
* n - 1 và n cũng như n và n+1 là 2 số liên tiếp nên (n-1) x n x (n+1) chia hết cho 2 (2)
Từ (1) và (2) \(\Rightarrow\left(n-1\right).n.\left(n+1\right)⋮6\) (đpcm)
nếu mà đề như vậy thì mk đã không hỏi bạn rồi !