Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a. \(\left(x-7\right)^2-x\left(x+25\right)=x^2-14x+49-x^2-25x\)
\(=-39x+49\)
b. \(\left(2x+5\right)^2-2x\left(2x-13\right)=4x^2+20x+25-4x^2+26x\)
\(=46x+25\)
c.\(\left(x+3\right)^2-\left(x+2\right)^2-3\left(x+1\right)\left(x-1\right)\)
\(=x^2+6x+9-x^2-4x-4-3x^2+3\)
\(=-3x^2+2x+8\)
Bài này bạn phải chuyển 2xyz sang vế kia rồi nhóm hợp lí mới ra được.
(x^2.y +z^2.y -2xyz) -(y^2.x -y^2.z)+(x^2.z -x.z^2) =0
y(x^2 +z^2 -2xz)- y^2(x-z) +xz(x-z) =0
y(x-z)(x-z) -y^2(x-z)+xz(x-z)=0
(x-z)(xy-yz-y^2 +xz)=0
(x-z)(x-y)(y+z)=0
Nên x-z =0 hoặc x-y=0 hoặc y+z=0
Do đó: x=z hoặc x=y hoặc y=-z
Đặt \(x+y=a;y+z=b;z+x=c\)thì P=Q có nghĩa là:
\(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)
\(\Leftrightarrow a=b=c\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\)