Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử x là số hữu tỷ thì ta có
\(x=\frac{m}{n}\left(\left(m,n\right)=1\right)\)
\(\Rightarrow x-\frac{1}{x}=\frac{m}{n}-\frac{n}{m}=\frac{m^2-n^2}{mn}\)
Vì \(x-\frac{1}{x}\)là số nguyên nên m2 - n2 \(⋮\)m
\(\Rightarrow\)n2 \(⋮\)m
Mà n,m nguyên tố cùng nhau nên
m = \(\pm\)1
Tương tự ta cũng có
n =\(\pm\)1
\(\Rightarrow\)x = \(\pm\)1
Trái giả thuyết.
Vậy x phải là số vô tỷ.
Ta có: \(2x-\left(x-\frac{1}{x}\right)=x+\frac{1}{x}\)
\(\Rightarrow x+\frac{1}{x}\)là số vô tỷ.
Ta có: \(\left(x+\frac{1}{x}\right)^2=\left(x-\frac{1}{x}\right)^2+4\)nên là số nguyên
\(\Rightarrow\left(x+\frac{1}{x}\right)^{2n}\)là số hữu tỷ.
Mà \(x+\frac{1}{x}\)là số vô tỷ nên
\(\left(x+\frac{1}{x}\right)^{2n+1}=\left(x+\frac{1}{x}\right)\left(x+\frac{1}{x}\right)^{2n}\)
là số vô tỷ
a/ \(x=\sqrt{2}-1\)
b/ Giả sử x là số vô tỷ
\(x=\frac{m}{n}\left[\left(m,n\right)=1\right]\)
\(\Rightarrow x-\frac{1}{x}=\frac{m}{n}-\frac{n}{m}=\frac{m^2-n^2}{mn}\)
Vì \(x-\frac{1}{x}\)là số nguyên \(\Rightarrow m^2-n^2⋮m\)
\(\Rightarrow n^2⋮m\)
Mà m, n nguyên tố cùng nhau nên
\(\Rightarrow n=1;-1\)
Tương tự ta cũng có: \(m=1;-1\)
\(\Rightarrow x=1;-1\) trái giả thuyết
\(\Rightarrow x\)là số vô tỷ
Ta có:
\(2x-\left(x-\frac{1}{x}\right)=x+\frac{1}{x}\)
\(\Rightarrow x+\frac{1}{x}\)là số vô tỷ
Ta có:
\(\left(x+\frac{1}{x}\right)^2=\left(x-\frac{1}{x}\right)^2+4\) là số nguyên
\(\Rightarrow\left(x+\frac{1}{x}\right)^{2n}\) là số hữu tỉ và \(\left(x+\frac{1}{x}\right)^{2n+1}=\left(x+\frac{1}{x}\right)\left(x+\frac{1}{x}\right)^{2n}\)là số vô tỉ.
Điều kiện \(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)
\(1+\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}\)
\(\Leftrightarrow\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1\) (\(\sqrt{x}+\sqrt{y}-1>0\))
\(\Leftrightarrow\sqrt{x}+\sqrt{y}-\sqrt{xy}+1=0\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) (\(\sqrt{xy}-1>0\))
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2=\left(\sqrt{xy}-1\right)^2\)
\(\Leftrightarrow4\sqrt{xy}=x+y-xy-1\)
Vì x, y nguyên nên \(\sqrt{xy}\) cũng phải nguyên
\(\Rightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) nguyên (1)
Ta lại có:
\(x-y=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(\Rightarrow\sqrt{x}-\sqrt{y}\) nguyên (2)
Lấy (1) + (2) và (1) - (2) ta có:
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}=2\sqrt{x}\\\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\end{cases}}\)
\(\Rightarrow\sqrt{x},\sqrt{y}\) là số nguyên
Vậy x, y là bình phương đúng của 1 số nguyên.
Câu 2: Nhân cả hai vế của phương trình với 4 , ta có:
\(4x^2+4y^2-4x-4x=32\Leftrightarrow\left(4x-4x+1\right)+\left(4y^2-4y+1\right)=34\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2y-1\right)^2=34\)
Ta thấy 34 = 52 + 32 nên ta có bảng:
2x-1 | 5 | -5 | 3 | -3 |
x | 3 | -2 | 2 | -1 |
2y-1 | 5 | -5 | 3 | -3 |
y | 3 | -3 | 2 | -1 |
Vậy các cặp nghiệm nguyên thỏa mãn là (5;3) , (5;-3) , (-5;3) , (-5;-3) , (3; 5), (3;-5) , (-3; 5), (-3;-5)
C.hóa \(x+y=1\) và dùng C-S:
\(VT^2\le\frac{2x}{\left(y+1\right)^2}+\frac{2y}{\left(x+1\right)^2}\le\frac{8}{9}=VP^2\)
\(BDT\Leftrightarrow\frac{x}{\left(2-x\right)^2}+\frac{y}{\left(2-y\right)^2}\le\frac{4}{9}\left(1\right)\)
Ta có BĐT phụ \(\frac{x}{\left(2-x\right)^2}\le\frac{20}{27}x-\frac{4}{27}\)
\(\Leftrightarrow-\frac{\left(2x-1\right)^2\left(5x-16\right)}{27\left(x-2\right)^2}\le0\) *Đúng*
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT_{\left(1\right)}\le\frac{20}{27}\left(x+y\right)-\frac{4}{27}\cdot2=\frac{4}{9}=VP_{\left(1\right)}\)
"=" khi \(x=y=\frac{1}{2}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(x+\frac{1}{2x}\ge2\sqrt{x\cdot\frac{1}{2x}}=2\sqrt{\frac{1}{2}}\)
\(y+\frac{2}{y}\ge2\sqrt{y\cdot\frac{2}{y}}=2\sqrt{2}\)
=> \(x+\frac{1}{2x}+y+\frac{2}{y}\ge2\sqrt{\frac{1}{2}}+2\sqrt{2}=3\sqrt{2}\left(đpcm\right)\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x=\sqrt{\frac{1}{2}}\\y=\sqrt{2}\end{cases}}\)
(phương pháp phản chứng )
giả sử x + \(\dfrac{1}{x}\) ϵ Q ⇔ x + \(\dfrac{1}{x}\) = \(\dfrac{a}{b}\) (a,b ϵN, b#0)
⇔ x = \(\dfrac{a}{b}\) - \(\dfrac{1}{x}\)⇔ x - \(\dfrac{1}{x}\) = \(\dfrac{a}{b}\) - \(\dfrac{1}{x}\) - \(\dfrac{1}{x}\) ⇔ x - \(\dfrac{1}{x}\) = \(\dfrac{a}{b}\)- \(\dfrac{2}{x}\)
nếu x = 2 ta có x - \(\dfrac{1}{x}\) = 2 - \(\dfrac{1}{2}\) = \(\dfrac{3}{4}\) (loại vì \(\dfrac{3}{4}\) không thuộc Z)
nếu \(\dfrac{a}{b}\)= \(\dfrac{2}{x}\) ⇔ x - \(\dfrac{1}{x}\) = 0 ⇔ x = +- 1 (loại) ⇔ \(\dfrac{a}{b}\) # \(\dfrac{2}{x}\)
vậy với x # +-1
⇔ x - \(\dfrac{1}{x}\)= \(\dfrac{a}{b}\) - \(\dfrac{2}{x}\) \(\notin\) Z ⇔ x + \(\dfrac{1}{x}\) \(\notin\) Q ⇔ x + \(\dfrac{1}{x}\) \(\in\) I (đpcm)