Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C A' B' C' M M' H K
Cho tam giác ABC; A'B'C' ; đường trung tuyến AM; A'M' thỏa mãn các điều kiện như đã cho
Gọi H là điểm đối xứng với A qua M; K là điểm đối xứng với A' qua M'
+) Tam giác AMC và HMB có: MC = MB (vì M là trung điểm của BC); góc AMC = HMB (đối đỉnh); AM = HM
=> tam giác AMC = HMB ( c - g - c) => AC = HB
+) Tương tự, tam giác A'M'C' = KM'B' ( c - g - c) => A'C' = KB'
mà AC = A'C' nên HB = KB'
+) Tam giác ABH và A'B'K có: AB = A'B'; BH = B'K; AH = A'K ( vì AH = 2.AM; A'K = 2.A'M' mà AM = A'M')
=> tam giác ABH = A'B'K ( c- c- c) => góc BAM = B'A'M' (1)
+) Chứng minh tương tự, ta có: tam giác ACH = A'C'K ( c - c - c) => góc CAM = C'A'M' (2)
Từ (1)(2) => góc BAM + CAM = B'A'M' + C'A'M' => góc BAC = góc B'A'C'
+) Xét tam giác ABC và A'B'C' có: AB = A'B'; góc BAC = B'A'C'; AC= A'C'
=> Tam giác ABC = A'B'C' (c - g- c)
Vậy.....
Chứng minh rằng nếu tứ giác ABCD có hai đường chéo vuông góc với nhau thì tổng bình phương hai cạnh đối này bằng tổng bình phương hi cạnh đối kia.
Gọi giao của AC và BD là O , do hai đường chéo vuông góc
=> các tam giác : OAB, OBC, OCD, ODA là các tam giác vuông tại O
xét tam giác OAB có AB^2 = OA^2 + OB^2 (1)
xét tam giác ODC có DC^2 = OD^2 + OC^2 (2)
xét tam giác OAD có AD^2 = OA^2 + OD^2 (3)
xét tam giác OBC có BC^2 = OC^2 + OB^2 (4)
từ (1) và (2)=> AB^2 + CD^2 = OA^2 +OB^2 +OC^2 +OD^2 (5)
từ (3) và (4)=> BC^2 + AD^2 = OA^2 +OB^2 +OC^2 +OD^2 (6)
từ (5) và (6) => AB^2 + CD^2 = BC^2 + AD^2 (điều phải c/m )
Tam giác AID vuông tại I, áp dụng định lí Pytago, ta có A{D^2} = A{I^2} + I{D^2} (1)
Tam giác AID vuông tại I, áp dụng định lí Pytago, ta có A{B^2} = A{I^2} + I{B^2} (2)
Tam giác AID vuông tại I, áp dụng định lí Pytago, ta có C{D^2} = C{I^2} + I{D^2} (3)
Tam giác AID vuông tại I, áp dụng định lí Pytago, ta có B{C^2} = B{I^2} + I{C^2} (4)
Vế cộng vế (1) và (4), ta được: A{D^2} + B{C^2} = 2\left( {I{A^2} + I{B^2} + I{C^2} + I{D^2}} \right) (5)
Vế cộng vế (2) và (3), ta được: A{B^2} + C{D^2} = 2\left( {I{A^2} + I{B^2} + I{C^2} + I{D^2}} \right) (6)
Từ (5) và (6), ta suy ra A{D^2} + B{C^2} = A{B^2} + C{D^2} (đpcm)