K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 p và 2p+1 nguyên tố 

* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 

* xét p # 3 

=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 

=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 

=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

# là chia hết nhé!

 k cho mình nhé

24 tháng 4 2016

Số nguyên tố lớn hơn 3 có dạng:3k+1,3k+2(k\(\in\)N*)

Với p=3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3(trái với giả thiếu)

Với p=3k+2 thì 4p+1=4(3k+2)+1=12k+9 chia hết cho 3,là hợp số

     Vậy nếu p và 2p+1 là các số nguyên tố lớn hơn 3 thì 4p+1 là hợp số(đpcm)

24 tháng 4 2016

Vì P là số nguyên tố lớn hơn 3 nên P có dạng 3k+1 hoặc 3k+2( K \(\ge\) 1) 

 Với P=3k+1

Khi đó 2P+1 = 2(3k+1) +1 = 6k+ 3 luôn chia hết cho 3 với mọi k \(\ge\) 1( => 2P+1 là hợp số, trái với đề bài)

=> Số nguyên tố P có dạng 3k+ 2

Ta có: 4P +1= 4(3k+2)+1= 12k +9 luôn chia hết cho 3 với mọi k\(\ge\) 1 mà 4P +1 luôn lớn hơn 3

Vậy 4P+1 là hợp số nếu P và 2P+1 là các số nguyên tố lớn hơn 3

9 tháng 4 2021

            Vì p là số nguyên tố <3 nên p=3k+1 hoặc 3k+2(k thuộc N*)

- Nếu p=3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 và 6k+3>3 nên 2p+1 là hợp số (loại)

-Nếu p=3k+2 thì 4p+1=4(3k+2)+1= 12k+9 chia hết cho 3 và 12k+9>3 nên là hợp số (loại) 

suy ra 4p+1 là hợp số (đpcm)

k xem mình đúng ko nha.

9 tháng 4 2021

Chỗ p là sô nguyên tố >3 nha.

p là số nguyên tố lớn hơn 3 nên chắc chắn p ko chia hết cho 3

=>2p ko chia hết cho 3

mà 2p+1 nguyên tố

nên 2p+2 chia hết cho 3

=>2(2p+2) chia hết cho 3

=>4p+4 chia hết cho 3

=>4p+1 chia hết cho 3

=>4p+1 là hợp số(đpcm)

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$

Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$
Mà $2p+1>3$ nên $2p+1$ không là số nguyên tố (trái giả thiết)

Do đó $p=3k+2$. Khi đó:
$4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ với mọi $p>3$ nên $4p+1$ là hợp số.

Ta có đpcm.

24 tháng 5 2016

vì p>3 nên p lẻ suy ra p là 3k+1 hoặc 3k+2

nếu là 3k+1 suy ra 2p+ chia hết cho 3(loại)

nếu p=3k+2 suy ra 4p+4 là hợp số

9 tháng 4 2021

ơ sao 2p+ lại chia hết cho 3

bạn phan bá hưng

AH
Akai Haruma
Giáo viên
2 tháng 9 2023

Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho 3. Nghĩa là $p$ chia $3$ dư $1$ hoặc $2$. 

Nếu $p$ chia $3$ dư $1$ thì $2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p>3$ nên $2p+1$ không là snt (trái với đề) 

$\Rightarrow p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}$
$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ nên $4p+1$ là hợp số.

1 tháng 9 2023

Vì p là số nguyên tố lớn hơn 3 nên \(p=3k+1\) hoặc \(p=3k+2\) \(\left(k\inℕ^∗\right)\)

Nếu \(p=k+1\) thì \(2p+1=2.\left(3k+1\right)+1=6k+3\in3\) và \(6k+3>3\)

\(\Leftrightarrow2p+1\) là hợp số \(\left(loại\right)\)

Nếu \(p=3k+2\) . Khi đó \(4p+1=4.\left(3k+2\right)=1=12k+9\in3\)

Và \(12k+9>3\) nên là hợp số \(\left(nhận\right)\)

4 tháng 6 2021

Theo đề ra: p là số nguyên tố lớn hơn 3 => p không chia hết cho 3

=> p = 3k + 1 hoặc p = 3k + 2

* Với p = 3k + 1 thì:

2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 = 3 . ( 2k + 1 )

=> 2p + 1 chia hết cho 3

Ta có: 2p + 1 > 3

=> 2p + 1 là hợp số ( loại )

* Với p = 3k + 2 thì:

4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 = 3 . ( 4k + 3 )

=> 4p + 1 chia hết cho 3

Ta có: 4p + 1 > 3

=> 4p + 1 là hợp số

Vậy ...

17 tháng 12 2017

Ta có: 3k+1;3k+2

TH1:Nếu p=3k+1 thì 2p+1=2(3k+1)+1=6k+2+1=6k+3 là hợp số

TH2: Nếu p=3k+2 thì 2p+1=2(3k+1)+1=6k+4+1=6k+5 là số nguyên tố

Mà 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9

 => 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số 

Nên 4p+1 là hợp số

<=> đcpm