Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử c không phải là cạnh nhỏ nhất,chẳng hạn \(a\le c\).
Khi đó:\(a^2\le c^2\)và \(b^2\le\left(a+c\right)^2\le4c^2\)
\(\Rightarrow a^2+b^2< 5c^2\)(trái với giả thiết)
\(\Rightarrow\)điều giả sử sai
\(\Rightarrow\)điều ngược lại đúng,tức là c là độ dài cạnh nhỏ nhất của tam giác.
Giả sử c không là độ dài cạnh nhỏ nhất, không mất tính tổng quát, giả sử : \(c\ge a\)
\(\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\)
\(\Rightarrow b^2>4c^2=\left(2c\right)^2\)(1)
Vì b và c là số dương (độ dài các cạnh) nên \(\left(1\right)\Leftrightarrow b>2c\ge c+a\)(trái với bđt tam giác)
Vậy điều giả sử là sai nên c là độ dài cạnh nhỏ nhất (đpcm)
CM :nếu a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất - Đại số - Diễn đàn Toán học
fzdyxchgbvrhdfnckudjkzjxrfeudfcchfnvrjfh urkdjfhbv rujfv vc bffvn c,kujdfhc n
+) Giả sử 0<a≤c0<a≤c ta có: a2≤c2a2≤c2
a2+b2>5c2a2+b2>5c2
⇒a2+b2>5a2⇒a2+b2>5a2
⇒b2>4a2⇒b2>4a2
⇒b>2a⇒b>2a (1)
c2>a2⇒b2+c2>a2+b2>5c2c2>a2⇒b2+c2>a2+b2>5c2
⇒b2>4c2⇒b2>4c2
⇒b>2c⇒b>2c (2)
Cộng (1), (2) ⇒2b>2a+2c⇒2b>2a+2c
⇒b>a+c⇒b>a+c ( vô lí )
⇒c<a⇒c<a
+) Chứng minh tương tự suy ra c < b
{c<ac<b⇒{Cˆ<AˆCˆ<Bˆ⇒2Cˆ<Aˆ+Bˆ{c<ac<b⇒{C^<A^C^<B^⇒2C^<A^+B^
⇒3Cˆ<Aˆ+Bˆ+Cˆ⇒3C^<A^+B^+C^
⇒3Cˆ<180o⇒3C^<180o
⇒Cˆ<60o(đpcm)⇒C^<60o(đpcm)
Vậy...