Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng nếu có(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) thì 4 số a,b,c,d lập thành 1 tỉ lệ thức.
\(b=\frac{a+c}{2}\Rightarrow2b=a+c\)
\(c=\frac{2bd}{b+d}\Rightarrow c\left(b+d\right)=2bd\)
\(\Rightarrow c\left(b+d\right)=\left(a+c\right)d\Rightarrow cb+cd=ad+cd\Rightarrow ad=bc\)
Vậy 4 số a,b,c,d lập thành 1 tỉ lệ thức.
[ab(ab-2cd)+c2 d2 ] [ab(ab-2)+2(ab+1)=0<=>(a2b2-2abcd+c2d2)(a2b2-2ab+2ab+2)=0
<=>[(a2b2 - abcd)+(-abcd+c2d2)](a2b2+2)=0<=>ab(ab-cd)-cd(ab-cd)=0(vì a2b2 > 0)
<=>(ab-cd)2=0<=>ab=cd
\(a+d=b+c\Rightarrow\left(a+d\right)^2=\left(b+c\right)^2\Rightarrow a^2+d^2+2ad=b^2+c^2+2bc.\)
Do \(a^2+d^2=b^2+c^2\Rightarrow2ad=2bc\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)